首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2015年   1篇
  2012年   2篇
  2011年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
A number of recent experimental approaches demonstrated that a three-dimensional organization of the eukaryotic genome play an important role in the regulation of its activity. One of the most important results was a discovery of the genome separation into relatively independent topologically-associated domains (TADs). They restricted the action area of regulatory elements, i.e., they simultaneously were regulatory domains of the genome. In this connection, an understanding of the molecular mechanism of the TAD formation has become a very topical problem. Here, we review and discuss our recent data which demonstrated that the TAD formation was directed by simple physical laws and was based on establishing multiple internucleosomal contacts.  相似文献   
3.
In mammals, genomic DNA that is roughly 2 m long is folded to fit the size of the cell nucleus that has a diameter of about 10 μm. The folding of genomic DNA is mediated via assembly of DNA-protein complex, chromatin. In addition to the reduction of genomic DNA linear dimensions, the assembly of chromatin allows to discriminate and to mark active (transcribed) and repressed (non-transcribed) genes. Consequently, epigenetic regulation of gene expression occurs at the level of DNA packaging in chromatin. Taking into account the increasing attention of scientific community toward epigenetic systems of gene regulation, it is very important to understand how DNA folding in chromatin is related to gene activity. For many years the hierarchical model of DNA folding was the most popular. It was assumed that nucleosome fiber (10-nm fiber) is folded into 30-nm fiber and further on into chromatin loops attached to a nuclear/chromosome scaffold. Recent studies have demonstrated that there is much less regularity in chromatin folding within the cell nucleus. The very existence of 30-nm chromatin fibers in living cells was questioned. On the other hand, it was found that chromosomes are partitioned into self-interacting spatial domains that restrict the area of enhancers action. Thus, TADs can be considered as structural-functional domains of the chromosomes. Here we discuss the modern view of DNA packaging within the cell nucleus in relation to the regulation of gene expression. Special attention is paid to the possible mechanisms of the chromatin fiber self-assembly into TADs. We discuss the model postulating that partitioning of the chromosome into TADs is determined by the distribution of active and inactive chromatin segments along the chromosome.This article was specially invited by the editors and represents work by leading researchers.  相似文献   
4.
5.
Chromosomes in many organisms, including Drosophila and mammals, are folded into topologically associating domains (TADs). Increasing evidence suggests that TAD folding is hierarchical, wherein subdomains combine to form larger superdomains, instead of a sequence of nonoverlapping domains. Here, we studied the hierarchical structure of TADs in Drosophila. We show that the boundaries of TADs of different hierarchical levels are characterized by the presence of different portions of active chromatin, but do not vary in the binding of architectural proteins, such as CCCTC binding factor or cohesin. The apparent hierarchy of TADs in Drosophila chromosomes is not likely to have functional importance but rather reflects various options of long-range chromatin folding directed by the distribution of active and inactive chromatin segments and may represent population average.  相似文献   
6.
The developmental switch of globin gene expression is a characteristic feature of vertebrate organisms. The switch of β-globin expression is believed to depend on reconfiguration of the active chromatin hub, which contains transcribed genes and regulatory elements. Mechanisms controlling the switch of α-globin gene expression are less clear. Here, we studied the mode of chromatin packaging of the chicken α-globin gene domain in red blood cells (RBCs) of primitive and definite lineages and the spatial configuration of this domain in RBCs of primitive lineage. It has been demonstrated that RBCs of primitive lineage already contain the adult-type active chromatin hub but the embryonal α-type globin π gene is not recruited to this hub. Distribution of active and repressive histone modifications over the α-globin gene domain in RBCs of definite and primitive lineages does not corroborate the hypothesis that inactivation of the π gene in RBCs of adult lineage is mediated via formation of a local repressed chromatin domain. This conclusion is supported by the demonstration that in chicken erythroblasts of adult lineage, the embryonal and adult segments of the α-globin gene domain show similar elevated sensitivities to DNase I.  相似文献   
7.
8.
Liquid–liquid phase separation (LLPS) contributes to the spatial and functional segregation of molecular processes within the cell nucleus. However, the role played by LLPS in chromatin folding in living cells remains unclear. Here, using stochastic optical reconstruction microscopy (STORM) and Hi-C techniques, we studied the effects of 1,6-hexanediol (1,6-HD)-mediated LLPS disruption/modulation on higher-order chromatin organization in living cells. We found that 1,6-HD treatment caused the enlargement of nucleosome clutches and their more uniform distribution in the nuclear space. At a megabase-scale, chromatin underwent moderate but irreversible perturbations that resulted in the partial mixing of A and B compartments. The removal of 1,6-HD from the culture medium did not allow chromatin to acquire initial configurations, and resulted in more compact repressed chromatin than in untreated cells. 1,6-HD treatment also weakened enhancer-promoter interactions and TAD insulation but did not considerably affect CTCF-dependent loops. Our results suggest that 1,6-HD-sensitive LLPS plays a limited role in chromatin spatial organization by constraining its folding patterns and facilitating compartmentalization at different levels.  相似文献   
9.
10.
3D Genomics     
Razin  S. V.  Ulianov  S. V.  Gavrilov  A. A. 《Molecular Biology》2019,53(6):802-812
Molecular Biology - The development of new research methods significantly changed our views on the role that the 3D organization of the genome plays in its functional activity. It was found that...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号