首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   870篇
  免费   27篇
  897篇
  2024年   4篇
  2023年   5篇
  2022年   7篇
  2021年   11篇
  2020年   6篇
  2019年   10篇
  2018年   13篇
  2017年   12篇
  2016年   15篇
  2015年   38篇
  2014年   36篇
  2013年   50篇
  2012年   45篇
  2011年   57篇
  2010年   31篇
  2009年   19篇
  2008年   64篇
  2007年   48篇
  2006年   26篇
  2005年   49篇
  2004年   37篇
  2003年   39篇
  2002年   32篇
  2001年   26篇
  2000年   25篇
  1999年   12篇
  1998年   9篇
  1996年   5篇
  1993年   4篇
  1992年   5篇
  1991年   8篇
  1990年   10篇
  1989年   8篇
  1988年   5篇
  1987年   10篇
  1986年   7篇
  1984年   7篇
  1983年   4篇
  1981年   7篇
  1980年   4篇
  1978年   6篇
  1976年   4篇
  1975年   12篇
  1974年   8篇
  1973年   8篇
  1971年   4篇
  1970年   7篇
  1968年   4篇
  1967年   3篇
  1965年   4篇
排序方式: 共有897条查询结果,搜索用时 0 毫秒
1.
G protein-coupled receptor kinase 2 (GRK2) is a key modulator of G protein-coupled receptors (GPCR). Altered expression of GRK2 has been described to occur during pathological conditions characterized by impaired GPCR signaling. We have reported recently that GRK2 is rapidly degraded by the proteasome pathway and that beta-arrestin function and Src-mediated phosphorylation are involved in targeting GRK2 for proteolysis. In this report, we show that phosphorylation of GRK2 by MAPK also triggers GRK2 turnover by the proteasome pathway. Modulation of MAPK activation alters the degradation of transfected or endogenous GRK2, and a GRK2 mutant that mimics phosphorylation by MAPK shows an enhanced degradation rate, thus indicating a direct effect of MAPK on GRK2 turnover. Interestingly, MAPK-mediated modulation of wild-type GRK2 stability requires beta-arrestin function and is facilitated by previous phosphorylation of GRK2 on tyrosine residues by c-Src. Consistent with an important physiological role, interfering with this GRK2 degradation process results in altered GPCR responsiveness. Our data suggest that both c-Src and MAPK-mediated phosphorylation would contribute to modulate GRK2 degradation, and put forward the existence of new feedback mechanisms connecting MAPK cascades and GPCR signaling.  相似文献   
2.
Since classical times and earlier, footprints in stone have intrigued humanity. Sometimes the supposed footprints were mere indentations produced by the chances of erosion; sometimes they were invertebrate fossils; and sometimes they were faked; but quite often they were the tracks of extinct creatures. The interpretations resulting from observations of these phenomena included legends of gods, heroes and saints: but, on occasion, the envisioning of the track‐maker was remarkably accurate. This account of the folklore of footprints surveys legends from Europe, North and South America, Africa and Australia; it concludes with the beginning of their scientific observation.  相似文献   
3.
4.
5.
6.
7.
Kinetics during stair ambulation is currently studied via either the use of sensing elements embedded in the steps of the stairway or simple rigid blocks of different height positioned on top of existing force platforms, typically embedded in a walkway for gait analysis. Neither of these approaches is truly satisfactory for gait analysis laboratories. The first one is expensive and requires setting up a dedicated space. The second approach is limited by the number of platforms utilized in the laboratory for evaluating level walking. This communication proposes a novel design, referred to as "interlaced stairway", that allows one to measure ground reaction force and position of the center of pressure (CoP) for four foot contacts during stair ambulation using only two force platforms embedded in a walkway. Accuracy and precision of the CoP estimates and natural frequency of the stairway structure were derived from experimental data. Test results indicate that the interlaced stairway structure does not appreciably reduce the quality of the measures gathered by the existing force platforms. Specifically, the estimated CoP coordinates show good agreement with the horizontal coordinates of the geometric center of the calibration object utilized to assess accuracy and precision of the CoP estimates (max difference < 6 mm). The natural frequency of the stairway structure is lower than the one for the unloaded force platform but higher than the frequency components of interest in stair ambulation analysis.  相似文献   
8.
Circulating human lymphocytes contain a transmembrane oxidoreductase (PMOR) capable of reducing dichlorophenol indophenol (DCIP) by endogenous reductants, presumably NADH. Membranes from lymphocytes obtained from buffy coats contain a NADH DCIP reductase having a K(m) of about 1 microM and almost insensible to dicoumarol. The PMOR of lymphocytes from insulin-dependent diabetic patients is higher than that from age-matched controls and, in addition, has a dicoumarol-sensitive component, lacking in most controls, presumably due to membrane association of DT-diaphorase. The increase of PMOR in diabetes is likely due to overexpression of the enzyme, in view of the very low K(m) for NADH indicating that, in intact cells, the enzyme is practically saturated with the reductant substrate.  相似文献   
9.
10.
    
Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.Bacterial lipoproteins (Lpps)1 are a subset of membrane proteins that are covalently modified with a lipidic moiety at their N-terminal cysteine residue. It is commonly reported that Lpps of Gram-positive bacteria are processed by two key enzymes; the prolipoprotein diacylglyceryl transferase (Lgt) and the lipoprotein signal peptidase (Lsp). The Lgt enzyme recognizes a so-called lipobox motif in the C-terminal region of the signal peptide of a premature lipoprotein and transfers a diacylglyceryl moiety to the cysteine residue of the lipobox (1), (2). Subsequently, the Lsp enzyme cleaves the signal peptide resulting in a mature Lpp (3), (4). Nevertheless, recent reports have suggested that N-acylation occurs in bacteria that lack the Gram-negative homologous apolipoprotein N-acyltransferase (Lnt) gene responsible for this modification (5, 6), and that Lpp N-terminal could also be modified with an acetyl group in some Gram-positive (7).Lpps have been described as virulence factors because they play critical roles in membrane stabilization, nutrient uptake, antibiotic resistance, bacterial adhesion to host cells, protein maturation and secretion and many of them still have unknown function (8). Several studies have suggested that bacterial Lpps are pathogen-associated molecular patterns (PAMPs) sensed by the mammalian host through Toll-like receptor 2 (TLR2) heterodimerized with TLR1 or TLR6 to induce innate immunity activation and to control adaptive immunity (912). TLR2 plays a critical role in the host response to the Gram-positive bacteria Staphylococcus aureus (13) and Streptococcus agalactiae (14). Although TLR2 has been considered a receptor for various structurally unrelated PAMPs, recent studies have suggested that, via their lipid moiety, bacterial Lpps function as the major, if not the sole, ligand molecules responsible for TLR2 activation (15). Although Gram-negative Lpps have been widely studied, little information is available for Gram-positive Lpps (16) and the ways they are released into the bacterial extracellular compartment and reach the host immune system remain unclear.We focused our attention on Lpps release by Streptococcus pyogenes. This Gram-positive bacterium is an important human pathogen that causes a wide range of diseases from superficial and self-limiting infection, e.g. pharyngitis and impetigo, to more systemic or invasive diseases like necrotizing fasciitis and septicemia (17). Understanding the role of bacterial Lpps in mediating innate and acquired immunity can be instrumental for the therapy and prophylaxis of human S. pyogenes infections. In this study, we showed that in S. pyogenes Lpps are released into the growth medium within vesicle-like structures in minute amounts. Conditions weakening the bacterial cell wall, such as the addition of sublethal concentrations of penicillin to the bacterial growth medium enhanced this phenomenon and allowed the recovery of sufficient material to enable an in-depth characterization. Proteomic analysis of the vesicles revealed that they were almost exclusively constituted of Lpps. A total of 28 Lpps were identified, representing more than 72% of the Lpps predicted from the genome of the strain under investigation. In addition, multiple transmembrane domain proteins were not found in abundance associated to the vesicles, indicating that vesicles were not representative of the bacterial membrane. We defined these vesicles as Lipoprotein-rich Membrane Vesicles (LMVs).Common characteristics are shared between the LMVs and the ExPortal described for the first time by Rosch and Caparon (18). This asymmetric and distinct membrane microdomain has been reported to be enriched in anionic phospholipids and acts in promoting the biogenesis of secreted proteins by coordinating interactions between nascent unfolded secretory proteins and the accessory factors required for their maturation (1921). An association between ExPortal and peptidoglycan synthesis has also been reported (22). Similarly, LMVs are enriched in anionic phosphatidylglycerol, enzymes involved in protein maturation/secretion and cell wall biogenesis, suggesting that LMVs might derive from the ExPortal. Finally, we showed that LMVs do not induce TLR2 activation, indicating that the Lpps did not act as PAMPs when integrated into the LMVs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号