首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   5篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   6篇
  2011年   7篇
  2010年   8篇
  2009年   7篇
  2008年   5篇
  2007年   10篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2003年   1篇
  2002年   7篇
  2001年   1篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
1.
Biocatalysis has ancient roots, yet it is developing into a key tool for synthesis in a wide range of applications. Important events in the history of enzyme technology from the 19th century onwards are highlighted. Considering the most relevant progress steps, the production of penicillanic acid and the impact of genetic engineering are traced in more detail. Applied biocatalysis has been defined as the application of a biocatalyst to achieve a desired conversion selectively, under controlled, mild conditions in a bioreactor. Biocatalysts are currently used to produce a wide range of products in the fields of food manufacture (such as bread, cheese, beer), fine chemicals (e.g., amino acids, vitamins), and pharmaceuticals (e.g., derivatives of antibiotics). They not only provide access to innovative products and processes, but also meet criteria of sustainability. In organic synthesis, recombinant technologies and biocatalysts have greatly widened the scope of application. Examples of current applications and processes are given. Recent developments and trends are presented as a survey, covering new methods for accessing biodiversity with new enzymes, directed evolution for improving enzymes, designed cells, and integrated downstream processing.  相似文献   
2.
3.
4.
Esterases (EC 3.1.1.x) represent a diverse group of hydrolases catalyzing the cleavage and formation of ester bonds and are widely distributed in animals, plants and microorganisms. Beside lipases, a considerable number of microbial carboxyl esterases have also been discovered and overexpressed. This review summarizes their properties and classification. Special emphasis is given on their application in organic synthesis for the resolution of racemates and prostereogenic compounds. In addition, recent results for altering their properties by directed evolution are presented.  相似文献   
5.
A novel esterase from Bacillus subtilis (BsubE) was cloned, functionally expressed in Escherichia coli and biochemically characterized. BsubE shows high homology (74% identity, >95% homology) to an esterase from the thermophilic B. stearothermophilus (BsteE). Both enzymes were efficiently expressed in E. coli, using a L-rhamnose-expression system [11,500 units/l (BsteE), 3,400 units/l (BsubE)] and were purified by Ni-nitrilotriacetic acid chromatography, yielding specific activities of 70 units/mg (BsteE) and 40 units/mg (BsubE), as determined by the hydrolysis of p-nitrophenyl acetate. Despite the high homology, both esterases revealed remarkable differences in their properties. As expected, the esterase from the thermophilic organism showed significantly higher temperature stability. Whereas BsteE showed highest activity at 65-70 degrees C, BsubE was almost inactivated at 50 degrees C. Moreover, both enzymes showed quite different substrate patterns in the hydrolysis of various esters. Whilst the B. subtilis esterase accepted esters with a branched alcohol moiety well, the B. stearothermophilus esterase was more useful in the hydrolysis of substrates with a sterically demanding carboxylic acid group. BsteE showed excellent enantioselectivity ( E>100) in the kinetic resolution of menthyl acetate and even accepted the bulky menthyl benzoate as substrate ( E=19). In contrast, BsubE converted 1-phenethylacetate with higher selectivity ( E>150 vs E=8).  相似文献   
6.
The synthesis of n-butanol and cinnamic alcohol esters of glucuronic acid and the esterification of ascorbic acid (vitamin C) with phenylbutyric acid was performed with lipase from Candida antarctica B (CAL-B, SP435) in a mainly solid-phase system. Products were obtained in 15 to 22 % yield. Computer modelling based on the structure of CAL-B was used to elucidate the access of glucuronic acid to the catalytic site of the lipase. A fixation of glucuronic acid via H-bonds to Q157, D134 and H224 during the transition state was observed. © Rapid Science Ltd. 1998  相似文献   
7.
Regioselective synthesis of e.g. 6-O-phenylbutyryl-1-n-butyl--D-glucopyranose was achieved in 21 % yield using almond--glucosidase and Candida antarctica lipase B. The -glucosidase reaction was performed in a biphasic (buffer/n-alcohol) system using free and Eupergit CTM-immobilized glucosidase. Immobilized enzyme allowed product formation even at a water content of 1 %. © Rapid Science Ltd. 1998  相似文献   
8.
Enantiomerically pure β-arylalkyl carboxylic acids are important synthetic intermediates for the preparation of a wide range of compounds with biological and pharmacological activities. A library of 83 enzymes isolated from the metagenome was searched for activity in the hydrolysis of ethyl esters of three racemic phenylalkyl carboxylic acids by a microtiter plate-based screening using a pH-indicator assay. Out of these, 20 enzymes were found to be active and were subjected to analytical scale biocatalysis in order to determine their enantioselectivity. The most enantioselective and also enantiocomplementary biocatalysts were then used for preparative scale reactions. Thus, both enantiomers of each of the three phenylalkyl carboxylic acids studied could be obtained in excellent optical purity and high yields.  相似文献   
9.
10.
A homology model for pig liver esterase was generated on the basis of human carboxyl esterase (hCE) and subjected to extensive molecular dynamics simulations. By virtual mutations the isoenzymes PLE1-6 and APLE were obtained, and the PLE1 trimer was built from the respective model of hCE. Stable structures for all systems were attained after simulations in solution for 12-18 ns, and contact zones between the monomers in the trimer are described. By evaluation of RMSD values of the residues in the monomer a rigid backplane with a number of β-strands and a flexible front part containing several α helices are distinguished. All mutations are concentrated in the soft part, and significant differences in the folding states of the helices were distinguished between the isoenzymes. Substrate access to the active site passes through two helices whose structures are affected by mutations. Variations in substrate specificity between the isoenzymes are ascribed to the structure of the entrance channel rather than to the conformation of the active site itself. The assignment of the residue with a negative side chain stabilizing the histidine protonation in the catalytic triad was revised, being GLU 452 in some isoenzymes rather than GLU 336, which would be the correspondent to most hydrolases. Arguments for this new assignment are given on the basis of simulations and statistics from the 3DM database for hydrolases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号