首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  8篇
  2021年   1篇
  2008年   2篇
  2003年   1篇
  2000年   2篇
  1999年   2篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
There is great interest in understanding the role of costimulatory molecules in immune activation. In both the influenza and HIV DNA immunization models, several groups have reported that coimmunization of mice with plasmids encoding immunogen and CD86, but not CD80, effectively boosts Ag-specific T cell activation. This difference in immune priming provided an opportunity to examine the functional importance of different regions of the B.7 molecules in immune activation. To examine this issue, we developed a series of chimeric CD80 and CD86 constructs as well as deletion mutants, and examined their immune activating potential in the DNA vaccine model. We demonstrate that the lack of an Ig constant-like region in the CD80 molecule is critically important to the enhanced immune activation observed. CD80 C-domain deletion mutants induce a highly inflammatory Ag-specific cellular response when administered as part of a plasmid vaccine. The data suggest that the constant-like domains, likely through intermolecular interactions, are critically important for immune regulation during costimulation and that engineered CD80/86 molecules represent more potent costimulatory molecules and may improve vaccine adjuvant efficacy.  相似文献   
2.
Activation of T cells requires both TCR-specific ligation by direct contact with peptide Ag-MHC complexes and coligation of the B7 family of ligands through CD28/CTLA-4 on the T cell surface. We recently reported that coadministration of CD86 cDNA along with DNA encoding HIV-1 Ags i.m. dramatically increased Ag-specific CTL responses. We investigated whether the bone marrow-derived professional APCs or muscle cells were responsible for the enhancement of CTL responses following CD86 coadministration. Accordingly, we analyzed CTL induction in bone marrow chimeras. These chimeras are capable of generating functional viral-specific CTLs against vaccinia virus and therefore represent a useful model system to study APC/T cell function in vivo. In vaccinated chimeras, we observed that only CD86 + Ag + MHC class I results in 1) detectable CTLs following in vitro restimulation, 2) detectable direct CTLs, 3) enhanced IFN-gamma production in an Ag-specific manner, and 4) dramatic tissue invasion of T cells. These results support that CD86 plays a central role in CTL induction in vivo, enabling non-bone marrow-derived cells to prime CTLs, a property previously associated solely with bone marrow-derived APCs.  相似文献   
3.
Immunity to tumors as well as to viral and bacterial pathogens is often mediated by cytotoxic T lymphocytes (CTLs). Thus, the ability to induce a strong cell-mediated immune response is an important requirement of novel immunotherapies. Antigen-presenting cells (APCs), including dendritic cells (DCs), are specialized in initiating T-cell immunity. Harnessing this innate ability of these cells to acquire and present antigens, we sought to improve antigen presentation by targeting antigens directly to DCs in vivo through apoptosis. We engineered Fas-mediated apoptotic death of antigen-bearing cells in vivo by co-expressing the immunogen and Fas in the same cell. We then observed that the death of antigen-bearing cells results in increased antigen acquisition by APCs including DCs. This in vivo strategy led to enhanced antigen-specific CTLs, and the elaboration of T helper-1 (Th1) type cytokines and chemokines. This adjuvant approach has important implications for viral and nonviral delivery strategies for vaccines or gene therapies.  相似文献   
4.
Dysregulation of localized iron homeostasis is implicated in several degenerative diseases, including Parkinson’s, Alzheimer’s, and age-related macular degeneration, wherein iron-mediated oxidative stress is hypothesized to contribute to cell death. Inhibiting toxic iron without altering normal metal-dependent processes presents significant challenges for standard small molecule chelating agents. We previously introduced BSIH (isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide) prochelators that are converted by hydrogen peroxide into SIH (salicylaldehyde isonicotinoyl hydrazone) chelating agents that inhibit iron-catalyzed hydroxyl radical generation. Here, we show that BSIH protects a cultured cell model for retinal pigment epithelium against cell death induced by hydrogen peroxide. BSIH is more stable than SIH in cell culture medium and is more protective during long-term experiments. Repetitive exposure of cells to BSIH is nontoxic, whereas SIH and desferrioxamine induce cell death after repeated exposure. Combined, our results indicate that cell protection by BSIH involves iron sequestration that occurs only when the cells are stressed by hydrogen peroxide. These findings suggest that prochelators discriminate toxic iron from healthy iron and are promising candidates for neuro- and retinal protection.  相似文献   
5.
DNA or nucleic acid immunization has been shown to induce both antigen-specific cellular and humoral immune responses in vivo. Moreover, immune responses induced by DNA immunization can be enhanced and modulated by the use of molecular adjuvants. To engineer the immune response in vivo towards more T-helper (Th)1-type cellular responses, we investigated the co-delivery of inteferon (IFN)-gamma, interleukin (IL)-12, and IL-18 genes along with DNA vaccine constructs. We observed that both antigen-specific humoral and cellular immune responses can be modulated through the use of cytokine adjuvants in mice. Most of this work has been performed in rodent models. There has been little confirmation of this technology in primates. We also evaluated the immunomodulatory effects of this approach in rhesus macaques, since non-human primates represent the most relevant animal models for human immunodeficiency virus (HIV) vaccine studies. As in the murine studies, we also observed that each Th1 cytokine adjuvant distinctively regulated the level of immune responses generated. Co-immunization of IFN-gamma and IL-18 in macaques enhanced the level of antigen-specific antibody responses. Similarly, co-delivery of IL-12 and IL-18 also enhanced the level of antigen-specific Th proliferative responses. These results extend this adjuvant strategy in a more relevant primate model and support the potential utility of these molecular adjuvants in DNA vaccine regimens.  相似文献   
6.
Copper and cadmium inhibited the growth as well as citric acid production (depending on the heavy metal concentrations) by citric-acid-producingAspergillus niger. Activity of citrate synthase was connected with citrate synthesis in the absence as well as in the presence of heavy metals. The activity of aconitase, and both NAD- and NADP-isocitrate dehydrogenases was strongly inhibited by copper. The contents of DNA and proteins in the cells decreased but the contents of lipids and polysaccharides increased considerably in the presence of both heavy metals.  相似文献   
7.
MiRNAs are a newly discovered class of small noncoding RNAs that regulate gene expression by translational repression and mRNA degradation. It has become evident that miRNAs are involved in many important biological processes, including tissue differentiation and development. The role of miRNAs in the eye is beginning to be explored following their recent detection by miRNA expression analyses. Many of the target genes for these ocular miRNAs remain undefined. This review summarizes the current information about ocular miRNA expression. Future research should focus on the function of ocular miRNAs in eye development.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号