首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   4篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2001年   2篇
  1991年   1篇
  1964年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS) and pressure gradients (∇P) across the atrioventricular (AV) canal. Zebrafish (Danio rerio) are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP)y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD) model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV) across the atrioventricular (AV) canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf), simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6), whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.  相似文献   
2.
Characteristic symptoms of Pierce's disease (PD) in grapevines (Vitis vinifera L.) were observed in 2002 in the major grape production fields of central Taiwan. Disease severity in vineyards varied, and all investigated grape cultivars were affected. Diseased tissues were collected from fields for subsequent isolation and characterization of the causal agent of the disease (Xylella fastidiosa). Koch's postulates were fulfilled by artificially inoculating two purified PD bacteria to grape cultivars Kyoho, Honey Red and Golden Muscat. The inoculated plants developed typical leaf‐scorching symptoms, and similar disease severity developed in the three cultivars from which the bacterium was readily re‐isolated, proving that the leaf scorch of grapevines in Taiwan is caused by the fastidious X. fastidiosa. This confirmed PD of grapevines is also the first report from the Asian Continent. Phylogenetic analyses were performed by comparing the 16S rRNA gene and 16S‐23S rRNA internal transcribed spacer region (16S‐23S ITS) of 12 PD strains from Taiwan with the sequences of 13 X. fastidiosa strains from different hosts and different geographical areas. Results showed that the PD strains of Taiwan were closely related to the American X. fastidiosa grape strains but not to the pear strains of Taiwan, suggesting that the X. fastidiosa grape and pear strains of Taiwan may have evolved independently from each other.  相似文献   
3.
The vertebrate heart undergoes early complex morphologic events in order to develop key cardiac structures that regulate its overall function (Fahed et al., 2013). Although many genetic factors that participate in patterning the heart have been elucidated (Tu and Chi, 2012), the cellular events that drive cardiac morphogenesis have been less clear. From a chemical genetic screen to identify cellular pathways that control cardiac morphogenesis in zebrafish, we observed that inhibition of the Rho signaling pathways resulted in failure to form the atrioventricular canal and loop the linear heart tube. To identify specific Rho proteins that may regulate this process, we analyzed cardiac expression profiling data and discovered that RhoU was expressed at the atrioventricular canal during the time when it forms. Loss of RhoU function recapitulated the atrioventricular canal and cardiac looping defects observed in the ROCK inhibitor treated zebrafish. Similar to its family member RhoV/Chp (Tay et al., 2010), we discovered that RhoU regulates the cell junctions between cardiomyocytes through the Arhgef7b/Pak kinase pathway in order to guide atrioventricular canal development and cardiac looping. Inhibition of this pathway resulted in similar underlying cardiac defects and conversely, overexpression of a PAK kinase was able to rescue the loss of RhoU cardiac defect. Finally, we found that Wnt signaling, which has been implicated in atrioventricular canal development (Verhoeven et al., 2011), may regulate the expression of RhoU at the atrioventricular canal. Overall, these findings reveal a cardiac developmental pathway involving RhoU/Arhgef7b/Pak signaling, which helps coordinate cell junction formation between atrioventricular cardiomyocytes to promote cell adhesiveness and cell shapes during cardiac morphogenesis. Failure to properly form these cell adhesions during cardiac development may lead to structural heart defects and mechanistically account for the cellular events that occur in certain human congenital heart diseases.  相似文献   
4.
Biomechanical forces intimately contribute to cardiac morphogenesis. However, volumetric imaging to investigate the cardiac mechanics with high temporal and spatial resolution remains an imaging challenge. We hereby integrated light-field microscopy (LFM) with light-sheet fluorescence microscopy (LSFM), coupled with a retrospective gating method, to simultaneously access myocardial contraction and intracardiac blood flow at 200 volumes per second. While LSFM allows for the reconstruction of the myocardial function, LFM enables instantaneous acquisition of the intracardiac blood cells traversing across the valves. We further adopted deformable image registration to quantify the ventricular wall displacement and particle tracking velocimetry to monitor intracardiac blood flow. The integration of LFM and LSFM enabled the time-dependent tracking of the individual blood cells and the differential rates of segmental wall displacement during a cardiac cycle. Taken together, we demonstrated a hybrid system, coupled with our image analysis pipeline, to simultaneously capture the myocardial wall motion with intracardiac blood flow during cardiac development.  相似文献   
5.
Oxidatively- or enzymatically-modified low-density lipoprotein (LDL) is intimately involved in the initiation and progression of atherosclerosis. The in vivo modified LDL is electro-negative (LDL) and consists of peroxidized lipid and unfolded apoB-100 protein. This study was aimed at establishing specific protein modifications and conformational changes in LDL assessed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) and circular dichroism analyses, respectively. The functional significance of these chemical modifications and structural changes were validated with binding and uptake experiments to- and by bovine aortic endothelial cells (BAEC).The plasma LDL fraction showed increased nitrotyrosine and lipid peroxide content as well as a greater cysteine oxidation as compared with native- and total-LDL. LC/MS/MS analyses of LDL revealed specific modifications in the apoB-100 moiety, largely involving nitration of tyrosines in the α-helical structures and β2 sheet as well as cysteine oxidation to cysteic acid in β1 sheet. Circular dichroism analyses showed that the α-helical content of LDL was substantially lower (∼25%) than that of native LDL (∼90%); conversely, LDL showed greater content of β-sheet and random coil structure, in agreement with unfolding of the protein. These results were mimicked by treatment of LDL subfractions with peroxynitrite (ONOO) or SIN-1: similar amino acid modifications as well as conformational changes (loss of α-helical structure and gain in β-sheet structure) were observed. Both LDL and ONOO-treated LDL showed a statistically significant increase in binding and uptake to- and by BAEC compared to native LDL. We further found that most binding and uptake in control-LDL was through LDL-R with minimal oxLDL-R-dependent uptake. ONOO-treated LDL was significantly bound and endocytosed by LOX-1, CD36, and SR-A with minimal contribution from LDL-R.It is suggested that lipid peroxidation and protein nitration may account for the mechanisms leading to apoB-100 protein unfolding and consequential increase in modified LDL binding and uptake to and by endothelial cells that is dependent on oxLDL scavenger receptors.  相似文献   
6.
7.
Optimization of intravascular shear stress assessment in vivo   总被引:1,自引:0,他引:1  
The advent of microelectromechanical systems (MEMS) sensors has enabled real-time wall shear stress (WSS) measurements with high spatial and temporal resolution in a 3-D bifurcation model. To optimize intravascular shear stress assessment, we evaluated the feasibility of catheter/coaxial wire-based MEMS sensors in the abdominal aorta of the New Zealand white (NZW) rabbits. Theoretical and computational fluid dynamics (CFD) analyses were performed. Fluoroscope and angiogram provided the geometry of aorta, and the Doppler ultrasound system provided the pulsatile flow velocity for the boundary conditions. The physical parameters governing the shear stress assessment in NZW rabbits included (1) the position and distance from which the MEMS sensors were mounted to the terminal end of coaxial wire or the entrance length, (Le), (2) diameter ratios of aorta to the coaxial wire (Daorta /Dcoaxial wire=1.5–9.5), and (3) the range of Reynolds numbers (116–1550). At an aortic diameter of 2.4 mm and a maximum Reynolds number of 212 (a mean Reynolds number of 64.2), the time-averaged shear stress (τave) was computed to be 10.06 dyn cm?2 with a systolic peak at 33.18 dyn cm?2. In the presence of a coaxial wire (Daorta /Dcoaxial wire=6 and Le=1.18 cm), the τave value increased to 15.54 dyn cm?2 with a systolic peak at 51.25 dyn cm?2. Real-time intravascular shear stress assessment by the MEMS sensor revealed an τave value of 11.92 dyn cm?2 with a systolic peak at 47.04 dyn cm?2. The difference between CFD and experimental τave was 18.5%. These findings provided important insights into packaging the MEMS sensors to optimize in vivo shear stress assessment.  相似文献   
8.
Plaque rupture is the leading cause of acute coronary syndromes and stroke. Plaque formation, otherwise known as stenosis, preferentially occurs in the regions of arterial bifurcation or curvatures. To date, real-time assessment of stenosis-induced flow reversal remains a clinical challenge. By interfacing microelectromechanical system (MEMS) thermal sensors with the high frequency pulsed wave (PW) Doppler ultrasound, we proposed to assess flow reversal in the presence of an eccentric stenosis. We developed a 3-D stenotic model (inner diameter of 6 mm, an eccentric stenosis with a height of 2.75 mm, and width of 21 mm) simulating a superficial arterial vessel. We demonstrated that heat transfer from the sensing element (2×80 μm2) to the flow field peaked as a function of flow rates at the throat of the stenosis along the center/midline of arterial model, and dropped downstream from the stenosis, where flow reversal was detected by the high frequency ultrasound device at 45 MHz. Computational fluid dynamics (CFD) codes are in agreement with the ultrasound-acquired flow profiles upstream, downstream, and at the throat of the stenosis. Hence, we characterized regions of eccentric stenosis in terms of changes in heat transfer along the midline of vessel and identified points of flow reversal with high spatial and temporal resolution.  相似文献   
9.
The Bcl-2-related survival proteins confer cellular resistance to a wide range of agents. Bcl-xL-expressing hepatocyte cell lines are resistant to tumour necrosis factor and anti-cancer drugs, but are more sensitive than isogenic control cells to antimycin A, an inhibitor of mitochondrial electron transfer. Computational molecular docking analysis predicted that antimycin A interacts with the Bcl-2 homology domain 3 (BH3)-binding hydrophobic groove of Bcl-xL. We demonstrate that antimycin A and a Bak BH3 peptide bind competitively to recombinant Bcl-2. Antimycin A and BH3 peptide both induce mitochondrial swelling and loss of DeltaPsim on addition to mitochondria expressing Bcl-xL. The 2-methoxy derivative of antimycin A3 is inactive as an inhibitor of cellular respiration but still retains toxicity for Bcl-xL+ cells and mitochondria. Finally, antimycin A inhibits the pore-forming activity of Bcl-x L in synthetic liposomes, demonstrating that a small non-peptide ligand can directly inhibit the function of Bcl-2-related proteins.  相似文献   
10.
Atrial fibrillation (AF) is characterized by multiple rapid and irregular atrial depolarization, leading to rapid ventricular responses exceeding 100 beats per minute (bpm). We hypothesized that rapid and irregular pacing reduced intravascular shear stress (ISS) with implication to modulating endothelial responses. To simulate AF, we paced the left atrial appendage of New Zealand White rabbits (n = 4) at rapid and irregular intervals. Surface electrical cardiograms were recorded for atrial and ventricular rhythm, and intravascular convective heat transfer was measured by microthermal sensors, from which ISS was inferred. Rapid and irregular pacing decreased arterial systolic and diastolic pressures (baseline, 99/75 mmHg; rapid regular pacing, 92/73; rapid irregular pacing, 90/68; p < 0.001, n = 4), temporal gradients ( ${\partial\tau/\partial t}$ from 1,275 ± 80 to 1,056 ± 180 dyne/cm2 s), and reduced ISS (from baseline at 32.0 ± 2.4 to 22.7 ± 3.5 dyne/cm2). Computational fluid dynamics code demonstrated that experimentally inferred ISS provided a close approximation to the computed wall shear stress at a given catheter to vessel diameter ratio, shear stress range, and catheter position. In an in vitro flow system in which time-averaged shear stress was maintained at ${{\tau_{\rm avg}} = 23 \pm 4\, {\rm dyn}\, {\rm cm}^{-2} {\rm s}^{-1}}$ , we further demonstrated that rapid pulse rates at 150 bpm down-regulated endothelial nitric oxide, promoted superoxide (O 2 .? ) production, and increased monocyte binding to endothelial cells. These findings suggest that rapid pacing reduces ISS and ${\partial\tau/\partial t}$ , and rapid pulse rates modulate endothelial responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号