首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  19篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
We examined six types of cells that form the ovary of the earthworm Dendrobena veneta ogonia, prooocytes, vitellogenic oocytes, trophocytes, fully grown postvitellogenic oocytes and somatic cells of the gonad. The quantitative stereological method revealed a much higher “volume density” of mitochondria in all of the types of germ-line cells except for the somatic cells. Fluorescent vital stain JC-1, however, showed a much higher oxidative activity of mitochondria in the somatic cells than in the germ-line cells. The distribution of active and inactive mitochondria within the studied cells was assessed using the computer program ImageJ. The analysis showed a higher luminosity of inactive mitochondria in all of the types of germ-line cells and a higher luminosity of active mitochondria in somatic cells. The OXPHOS activity was found in somatic cells mitochondria and in the peripheral mitochondria of the vitellogenic oocytes. The detection of reactive oxygen species (ROS) revealed a differentiated distribution of ROS in the different cell types. The amount of ROS substances was lower in somatic cells than in younger germ-line cells. The ROS level was also low in the cytoplasm of fully grown postwitellogenic oocytes. The distribution of the MnSOD enzyme that protects mitochondria against destructive role of ROS substances was high in the oogonia and in prooocytes and it was very high in vitellogenic and postvitellogenic oocytes. However, a much lower level of this protective enzyme was observed in the trophocytes and the lowest level was found in the cytoplasm of somatic cells. The lower mitochondrial activity and higher level of MnSOD activity in germ-line cells when compared to somatic cells testifies to the necessity of the organisms to protect the mitochondria of oocytes against the destructive role of the ROS that are produced during oxidative phosphorylation. The protection of the mitochondria in oocytes is essential for the transfer of healthy organelles to the next generation.  相似文献   
2.
Electron transport chain (ETCh) of ammonium (AOB) and nitrite oxidizing bacteria (NOB) participates in oxidation of ammonium to nitrate (nitrification). Operation of ETCh may be perturbed by a range of water-soluble xenobiotics. Therefore, consortia of nitrifying bacteria may be used as a biosensor to detect water contamination. A surprising feature of this system is an increase of oxygen consumption, detected in the presence of certain inhibitors of ETCh. Thus, to shed light on the mechanism of this effect (and other differences between inhibitors) we monitored separately respiration of the bacteria of the first (AOB - Nitrosomonas) and second (NOB -Nitrobacter) stages of nitrification. Furthermore, we measured plasma membrane potential and the level of reduction of NAD(P)H. We propose a novel model of ETCh in NOB to explain the role of reverse electron transport in the stimulation of oxygen consumption (previously attributed to hormesis).  相似文献   
3.

Background  

The actin cytoskeleton is involved in the responses of plants to environmental signals. Actin bundles play the role of tracks in chloroplast movements activated by light. Chloroplasts redistribute in response to blue light in the mesophyll cells of Nicotiana tabacum. The aim of this work was to study the relationship between chloroplast responses and the organization of actin cytoskeleton in living tobacco cells. Chloroplast movements were measured photometrically as changes in light transmission through the leaves. The actin cytoskeleton, labeled with plastin-GFP, was visualised by confocal microscopy.  相似文献   
4.

Introduction

Due to dangers associated with potential accidents from nuclear energy and terrorist threats, there is a need for high-throughput biodosimetry to rapidly assess individual doses of radiation exposure. Lipidomics and metabolomics are becoming common tools for determining global signatures after disease or other physical insult and provide a “snapshot” of potential cellular damage.

Objectives

The current study assesses changes in the nonhuman primate (NHP) serum lipidome and metabolome 7 days following exposure to ionizing radiation (IR).

Methods

Serum sample lipids and metabolites were extracted using a biphasic liquid–liquid extraction and analyzed by ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry. Global radiation signatures were acquired in data-independent mode.

Results

Radiation exposure caused significant perturbations in lipid metabolism, affecting all major lipid species, including free fatty acids, glycerolipids, glycerophospholipids and esterified sterols. In particular, we observed a significant increase in the levels of polyunsaturated fatty acids (PUFA)-containing lipids in the serum of NHPs exposed to 10 Gy radiation, suggesting a primary role played by PUFAs in the physiological response to IR. Metabolomics profiling indicated an increase in the levels of amino acids, carnitine, and purine metabolites in the serum of NHPs exposed to 10 Gy radiation, suggesting perturbations to protein digestion/absorption, biological oxidations, and fatty acid β-oxidation.

Conclusions

This is the first report to determine changes in the global NHP serum lipidome and metabolome following radiation exposure and provides information for developing metabolomic biomarker panels in human-based biodosimetry.
  相似文献   
5.
Metabolomics has been shown to have utility in assessing responses to exposure by ionizing radiation (IR) in easily accessible biofluids such as urine. Most studies to date from our laboratory and others have employed γ-irradiation at relatively high dose rates (HDR), but many environmental exposure scenarios will probably be at relatively low dose rates (LDR). There are well-documented differences in the biologic responses to LDR compared to HDR, so an important question is to assess LDR effects at the metabolomics level. Our study took advantage of a modern mass spectrometry approach in exploring the effects of dose rate on the urinary excretion levels of metabolites 2 days after IR in mice. A wide variety of statistical tools were employed to further focus on metabolites, which showed responses to LDR IR exposure (0.00309 Gy/min) distinguishable from those of HDR. From a total of 709 detected spectral features, more than 100 were determined to be statistically significant when comparing urine from mice irradiated with 1.1 or 4.45 Gy to that of sham-irradiated mice 2 days post-exposure. The results of this study show that LDR and HDR exposures perturb many of the same pathways such as TCA cycle and fatty acid metabolism, which also have been implicated in our previous IR studies. However, it is important to note that dose rate did affect the levels of particular metabolites. Differences in urinary excretion levels of such metabolites could potentially be used to assess an individual’s exposure in a radiobiological event and thus would have utility for both triage and injury assessment.  相似文献   
6.
Systems biology along with what is now classified as cytomics provides an excellent opportunity for cytometry to become integrated into studies where identification of functional proteins in complex cellular mixtures is desired. The combination of cell sorting with rapid protein-profiling platforms offers an automated and rapid technique for greater clarity, accuracy, and efficiency in identification of protein expression differences in mixed cell populations. The integration of cell sorting to purify cell populations opens up a new area for proteomic analysis. This article outlines an approach in which well defined cell analysis and separation tools are integrated into the proteomic programs within a core laboratory. In addition we introduce the concepts of flow cytometry sorting to demonstrate the importance of being able to use flow cytometry as a cell separation technology to identify and collect purified cell populations. Data demonstrating the speed and versatility of this combination of flow cytometry-based cell separation and protein separation and subsequent analysis, examples of protein maps from purified sorted cells, and an analysis of the overall procedure will be shown. It is clear that the power of cell sorting to separate heterogeneous populations of cells using specific phenotypic characteristics increases the power of rapid automated protein separation technologies.  相似文献   
7.
Influenza virus neuraminidase (NA), a type II transmembrane glycoprotein, possesses receptor-destroying activity and thereby facilitates virus release from the cell surface. Among the influenza A viruses, both the cytoplasmic tail (CT) and transmembrane domain (TMD) amino acid sequences of NA are highly conserved, yet their function(s) in virus biology remains unknown. To investigate the role of amino acid sequences of the CT and TMD on the virus life cycle, we systematically mutagenized the entire CT and TMD of NA by converting two to five contiguous amino acids to alanine. In addition, we also made two chimeric NA by replacing the CT proximal one-third amino acids of the NA TMD [NA(1T2N)NA] and the entire NA TMD (NATRNA) with that of human transferrin receptor (TR) (a type II transmembrane glycoprotein). We rescued transfectant mutant viruses by reverse genetics and examined their phenotypes. Our results show that all mutated and chimeric NAs could be rescued into transfectant viruses. Different mutants showed pleiotropic effects on virus growth and replication. Some mutants (NA2A5, NA3A7, and NA4A10) had little effect on virus growth while others (NA3A2, NA5A27, and NA5A31) produced about 50- to 100-fold-less infectious virus and still some others (NA5A14, NA4A19, and NA4A23) exhibited an intermediate phenotype. In general, mutations towards the ectodomain-proximal sequences of TMD progressively caused reduction in NA enzyme activity, affected lipid raft association, and attenuated virus growth. Electron microscopic analysis showed that these mutant viruses remained aggregated and bound to infected cell surfaces and could be released from the infected cells by bacterial NA treatment. Moreover, viruses containing mutations in the extreme N terminus of the CT (NA3A2) as well as chimeric NA containing the TMD replaced partially [NA(1T2N)NA] or fully (NATRNA) with TR TMD caused reduction in virus growth and exhibited the morphological phenotype of elongated particles. These results show that although the sequences of NA CT and TMD per se are not absolutely essential for the virus life cycle, specific amino acid sequences play a critical role in providing structural stability, enzyme activity, and lipid raft association of NA. In addition, aberrant morphogenesis including elongated particle formation of some mutant viruses indicates the involvement of NA in virus morphogenesis and budding.  相似文献   
8.
9.
Molecular mechanisms regulating the remodeling of the lymphatic vasculature from an immature plexus of vessels to a hierarchal network of initial and collecting lymphatics are not well understood. One gene thought to be important for this process is Angiopoietin-2 (Ang-2). Ang2−/− mice have previously been reported to exhibit an abnormal lymphatic phenotype but the precise nature of the lymphatic defects and the underlying mechanisms have yet to be defined. Here we demonstrate by whole-mount immunofluorescence staining of ear skin and mesentery that lymphatic vessels in Ang2−/− mice fail to mature and do not exhibit a collecting vessel phenotype. Furthermore, dermal lymphatic vessels in Ang2−/− pups prematurely recruit smooth muscle cells and do not undergo proper postnatal remodeling. In contrast, Ang2 knock-out Ang1 knock-in mice do develop a hierarchal lymphatic vasculature, suggesting that activation of Tie-2 is required for normal lymphatic development. Taken together, this work pinpoints a specific lymphatic defect of Ang2−/− mice and further defines the sequential steps in lymphatic vessel remodeling.  相似文献   
10.
Autophagy is indispensable for the proper architecture and flawless functioning of pancreatic β-cells. A growing body of evidence indicates reciprocal communication between autophagic pathways, apoptosis, and intracellular lipids. The way in which elevated levels of free saturated or unsaturated FAs contribute to progressive β-cell failure remains incompletely understood. Stearoyl-CoA desaturase (SCD)1, a key regulatory enzyme in biosynthesis of MUFAs, was shown to play an important role in regulation of β-cell function. Here, we investigated whether SCD1 activity is engaged in palmitate-induced pancreatic β-cell autophagy. We found augmented apoptosis and diminished autophagy upon cotreatment of INS-1E cells with palmitate and an SCD1 inhibitor. Furthermore, we found that additional treatment of the cells with monensin, an inhibitor of autophagy at the step of fusion, exacerbates palmitate-induced apoptosis. Accordingly, diminished SCD1 activity affected the accumulation, composition, and saturation status of cellular membrane phospholipids and neutral lipids. Such an effect was accompanied by aberrant endoplasmic reticulum stress, mitochondrial injury, and decreases in insulin secretion and cell proliferation. Our data reveal a novel mechanism by which the inhibition of SCD1 activity affects autophagosome-lysosome fusion because of perturbations in cellular membrane integrity, thus leading to an aberrant stress response and β-cell failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号