首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   12篇
  国内免费   1篇
  122篇
  2021年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   8篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
  1965年   1篇
排序方式: 共有122条查询结果,搜索用时 0 毫秒
1.
Isolated cleft palate is induced in the progeny of pregnant mice that are given glucocorticoids. The incidence varies among inbred strains and with dose and stage of gestation when the drug is given. One chromosomal region responsible for strain-associated differences in sensitivity is the major histocompatibility complex, H-2. H-2a is associated with susceptibility, H-2b with resistance. There appear to be both maternal and embryonic genetic factors affecting the sensitivity to glucocorticoids. In experiments reported here congenic strains of mice with H-2a, H-2d and H-2k haplotypes on a C57BL/10 genomic background were used. This allowed the determination of the effect on sensitivity by two H-2 subregions; the subregions are H-2K to I-E and I-C to H-2D. Methods included dose-response analysis and reciprocal cross analysis using dexamethasone given on day 12 of pregnancy. Results show that each subregion affects the strain's sensitivity to dexamethasone-induced cleft palate. The regression coefficients for B10.A-H-2a (45.4 ± 4.13) were different from those for B10.BR-H-2k (67.2 ± 10.8) and B10.D2-H-2d (70.5 ± 9.74). The estimated mean arcsine% cleft palate at 160 mg/kg was different for each strain: B10.A- H-2a, 53.1 ± 2.19; B10.BR-H-2k, 33.1 ± 2.27; B10.D2-H-2d, 25.0 ± 2.75. Different patterns of change in sensitivity were observed among the reciprocal crosses. In summary, the H-2K to I-E subregion seemed to influence both maternal and embryonic factors, whereas only embryonic factors were influenced by the I-C to H-2D subregion. These data suggest that the mechanisms affecting glucocorticoid sensitivity which are genetically encoded within each H-2 subregion are different, and there is an interaction between the alleles. The mode of interaction can be either complementation or epistasis.  相似文献   
2.
The objective of this study was to determine whether cells in G(0) phase are functionally distinct from those in G(1) with regard to their ability to respond to the inducers of DNA synthesis and to retard the cell cycle traverse of the G(2) component after fusion. Synchronized populations of HeLa cells in G(1) and human diploid fibroblasts in G(1) and G(0) phases were separately fused using UV-inactivated Sendai virus with HeLa cells prelabeled with [(3)H]ThdR and synchronized in S or G(2) phases. The kinetics of initiation of DNA synthesis in the nuclei of G(0) and G(1) cells residing in G(0)/S and G(1)/S dikaryons, respectively, were studied as a function of time after fusion. In the G(0)/G(2) and G(1)/G(2) fusions, the rate of entry into mitosis of the heterophasic binucleate cells was monitored in the presence of Colcemid. The effects of protein synthesis inhibition in the G(1) cells, and the UV irradiation of G(0) cells before fusion, on the rate of entry of the G(2) component into mitosis were also studied. The results of this study indicate that DNA synthesis can be induced in G(0)nuclei after fusion between G(0)- and S-phase cells, but G(0) nuclei are much slower than G(1) nuclei in responding to the inducers of DNA synthesis because the chromatin of G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells differ from G(1) cells with regard to their effects on the cell cycle progression of the G(2) nucleus into mitosis. This difference between G(0) and G(1) cells appears to depend on certain factors, probably nonhistone proteins, present in G(1) cells but absent in G(0) cells. These factors can be induced in G(0) cells by UV irradiation and inhibited in G(1) cells by cycloheximide treatment.  相似文献   
3.
Genetic control of human NK cell repertoire   总被引:28,自引:0,他引:28  
Through differential killer cell Ig-like receptor (KIR) and CD94:NKG2 gene expression, human NK cells generate diverse repertoires, each cell having an inhibitory receptor for autologous HLA class I. Using a new method for measuring repertoire difference that integrates multiple flow cytometry parameters, we found individual repertoire stability, but population variability. Correlating repertoire differences with KIR and HLA genotype for 85 sibling pairs reveals the dominant influence of KIR genotype; HLA genotype having a subtle, modulating effect on relative KIR expression frequencies. HLA and/or KIR genotype also influences CD94:NKG2A expression. After HLA-matched stem cell transplantation, KIR repertoires either recapitulated that of the donor or were generally depressed for KIR expression. Human NK cell repertoires are defined by combinations of variable KIR and HLA class I genes and conserved CD94:NKG2 genes.  相似文献   
4.
The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.  相似文献   
5.
6.
The ability of two strains of Lactobacillus acidophilus, CRL 640 and CRL 800, to survive and retain their biological activities under frozen storage was determined. Freezing and thawing, as well as frozen storage, damaged the cell membrane, rendering the microorganisms sensitive to sodium chloride and bile salts. Both lactic acid production and proteolytic activity were depressed after 21 days at -20 degreesC, whereas beta-galactosidase activity per cell unit was increased. Cell injury was partially overcome after repair in a salt-rich medium. Copyright 1998 Academic Press.  相似文献   
7.
CHK2/hCds1 plays important roles in the DNA damage-induced cell cycle checkpoint by phosphorylating several important targets, such as Cdc25 and p53. To obtain a better understanding of the CHK2 signaling pathway, we have carried out a yeast two-hybrid screen to search for potential CHK2-interacting proteins. Here, we report the identification of the mitotic checkpoint kinase, TTK/hMps1, as a novel CHK2-interacting protein. TTK/hMps1 directly phosphorylates CHK2 on Thr-68 in vitro. Expression of a TTK kinase-dead mutant, TTK(D647A), interferes with the G(2)/M arrest induced by either ionizing radiation or UV light. Interestingly, induction of CHK2 Thr-68 phosphorylation and of several downstream events, such as cyclin B1 accumulation and Cdc2 Tyr-15 phosphorylation, is also affected. Furthermore, ablation of TTK expression using small interfering RNA results not only in reduced CHK2 Thr-68 phosphorylation, but also in impaired growth arrest. Our results are consistent with a model in which TTK functions upstream from CHK2 in response to DNA damage and suggest possible cross-talk between the spindle assembly checkpoint and the DNA damage checkpoint.  相似文献   
8.
Rapamycin, an inhibitor of the serine/threonine kinase mammalian target of rapamycin (mTOR), is a widely used immunosuppressive drug. Rapamycin affects the function of dendritic cells (DCs), antigen-presenting cells participating in the initiation of primary immune responses and the establishment of immunological memory. Voltage-gated K(+) (Kv) channels are expressed in and impact on the function of DCs. The present study explored whether rapamycin influences Kv channels in DCs. To this end, DCs were isolated from murine bone marrow and ion channel activity was determined by whole cell patch clamp. To more directly analyze an effect of mTOR on Kv channel activity, Kv1.3 and Kv1.5 were expressed in Xenopus oocytes with or without the additional expression of mTOR and voltage-gated currents were determined by dual-electrode voltage clamp. As a result, preincubation with rapamycin (0-50 nM) led to a gradual decline of Kv currents in DCs, reaching statistical significance within 6 h and 50 nM of rapamycin. Rapamycin accelerated Kv channel inactivation. Coexpression of mTOR upregulated Kv1.3 and Kv1.5 currents in Xenopus oocytes. Furthermore, mTOR accelerated Kv1.3 channel activation and slowed down Kv1.3 channel inactivation. In conclusion, mTOR stimulates Kv channels, an effect contributing to the immunomodulating properties of rapamycin in DCs.  相似文献   
9.

Background

Systemic inflammation may contribute to cachexia in patients with chronic obstructive pulmonary disease (COPD). In this longitudinal study we assessed the association between circulating C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 levels and subsequent loss of fat free mass and fat mass in more than 400 COPD patients over three years.

Methods

The patients, aged 40–76, GOLD stage II-IV, were enrolled in 2006/07, and followed annually. Fat free mass and fat mass indexes (FFMI & FMI) were calculated using bioelectrical impedance, and CRP, TNF-α, IL-1ß, and IL-6 were measured using enzyme immunoassays. Associations with mean change in FFMI and FMI of the four inflammatory plasma markers, sex, age, smoking, FEV1, inhaled steroids, arterial hypoxemia, and Charlson comorbidity score were analyzed with linear mixed models.

Results

At baseline, only CRP was significantly (but weakly) associated with FFMI (r = 0.18, p < 0.01) and FMI (r = 0.27, p < 0.01). Univariately, higher age, lower FEV1, and use of beta2-agonists were the only significant predictors of decline in FFMI, whereas smoking, hypoxemia, Charlson score, and use of inhaled steroids predicted increased loss in FMI. Multivariately, high levels of TNF-α (but not CRP, IL-1ß or IL-6) significantly predicted loss of FFMI, however only in patients with established cachexia at entry.

Conclusion

This study does not support the hypothesis that systemic inflammation is the cause of accelerated loss of fat free mass in COPD patients, but suggests a role for TNF-α in already cachectic COPD patients.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号