首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   4篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2015年   4篇
  2014年   2篇
  2012年   3篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1976年   1篇
  1974年   3篇
  1973年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
2.

Premise

Strong postzygotic reproductive isolating barriers are usually expected to limit the extent of natural hybridization between species with contrasting ploidy. However, genomic sequencing has revealed previously overlooked examples of natural cross-ploidy hybridization in some flowering plant genera, suggesting that the phenomenon may be more common than once thought. We investigated potential cross-ploidy hybridization in British eyebrights (Euphrasia, Orobanchaceae), a group from which 13 putative cross-ploidy hybrid combinations have been reported based on morphology.

Methods

We analyzed a contact zone between diploid Euphrasia rostkoviana and tetraploid E. arctica in Wales. We sequenced part of the internal transcribed spacer (ITS) of nuclear ribosomal DNA and used genotyping by sequencing (GBS) to look for evidence of cross-ploidy hybridization and introgression.

Results

Common variant sites in the ITS region were fixed between diploids and tetraploids, indicating a strong barrier to hybridization. Clustering analyses of 356 single-nucleotide polymorphisms (SNPs) generated using GBS clearly separated samples by ploidy and revealed strong genetic structure (FST = 0.44). However, the FST distribution across all SNPs was bimodal, indicating potential differential selection on loci between diploids and tetraploids. Demographic inference suggested potential gene flow, limited to around one or fewer migrants per generation.

Conclusions

Our results suggest that recent cross-ploidy hybridization is rare or absent in a site of secondary contact in Euphrasia. While a strong ploidy barrier prevents hybridization over ecological timescales, such hybrids may form in stable populations over evolutionary timescales, potentially allowing cross-ploidy introgression to take place.  相似文献   
3.
Understanding hybridization and introgression between natural plant populations can give important insights into the origins of cultivated species. Recent studies suggest differences in ploidy might not create such strong reproductive barriers as once thought, and thus studies into cultivated origins should examine all co-occurring taxa, including those with contrasting ploidy levels. Here, we characterized hybridization between Chrysanthemum indicum L., Chrysanthemum vestitum (Hemsley) Ling and Chrysanthemum vestitum var. latifolium (Zhou & Chen), the most important wild species involved in the origins of cultivated chrysanthemums. We analyzed the population structure of 317 Chrysanthemum accessions based on 13 microsatellite markers and sequenced chloroplast trnL-trnF for a subset of 103 Chrysanthemum accessions. We identified three distinct genetic clusters, corresponding to the three taxa. We detected 20 hybrids between species of different ploidy levels, of which 19 were between C. indicum (4x) and C. vestitum (6x) and one was between C. indicum and C. vestitum var. latifolium (6x). Fourteen hybrids between C. indicum and C. vestitum were from one of the five study sites. Chrysanthemum vestitum and C. vestitum var. latifolium share only one chloroplast haplotype. The substantially different number of hybrids between hybridizing species was likely due to different levels of reproductive isolation coupled with environmental selection against hybrids. In addition, human activities could play a role in the different patterns of hybridization among populations.  相似文献   
4.
A major goal of evolutionary biology is to determine the mechanisms generating biodiversity. In Begonia, one of the largest plant genera (1900+ species), it has been postulated that the high number of endemic species is a by‐product of low gene flow among populations, which predisposes the group to speciation. However, this model of divergence requires that reproductive barriers accumulate rapidly among diverging species that overlap in their geographic ranges, otherwise speciation will be opposed by homogenizing gene flow in zones of secondary contact. Here, we test the outcomes of secondary contact in Begonia by genotyping multiple sympatric sites with 12 nuclear and seven plastid loci. We show that three sites of secondary contact between B. heracleifolia and B. nelumbiifolia are highly structured, mostly containing parental genotypes, with few F1 hybrids. A sympatric site between B. heracleifolia and B. sericoneura contains a higher proportion of F1s, but little evidence of introgression. The lack of later‐generation hybrids contrasts with that documented in many other plant taxa, where introgression is extensive. Our results, in conjunction with previous genetic work, show that Begonia demonstrate properties making them exceptionally prone to speciation, at multiple stages along the divergence continuum. Not only are populations weakly connected by gene flow, promoting allopatric speciation, but species often show strong reproductive barriers in secondary contact. Whether similar mechanisms contribute to diversification in other large genera remains to be tested.  相似文献   
5.
Parasitic plants demonstrate a diversity of growth strategies, life histories, and developmental and physiological characteristics. Most research to date has focused on a narrow range of parasitic taxa, particularly in the Orobanchaceae, while the other independent origins of parasitism have largely gone unstudied. One type of parasite that has received relatively little attention are the endophytic parasites, which have a fascinating growth strategy where the parasite is embedded within the host tissue, with the flower the only externally visibly plant part. Endophytic growth makes it challenging to understand basic aspects of species biology, such as the size of a given parasite, the number of parasites per host, and the genetic diversity of populations. Recent studies by Barkman et al. (2017) and Pelser et al. (2017) have used microsatellite genotyping to investigate the population biology of endoparasitic Rafflesiaceae species in Asia. They show the potential for extensive parasite spread within a host vine and the strong partitioning of genetic diversity by host. These species are also shown to have an outcrossing mating system. However, these studies suggest different reproductive strategies, one supporting monoecy and one suggesting dioecy. Overall, these studies partly “lift the lid” on the cryptic biology of Rafflesia and the Rafflesiaceae and open the door for future comparative studies between endophytic and free-living parasitic plants.  相似文献   
6.
Plastid sequencing is an essential tool in the study of plant evolution. This high‐copy organelle is one of the most technically accessible regions of the genome, and its sequence conservation makes it a valuable region for comparative genome evolution, phylogenetic analysis and population studies. Here, we discuss recent innovations and approaches for de novo plastid assembly that harness genomic tools. We focus on technical developments including low‐cost sequence library preparation approaches for genome skimming, enrichment via hybrid baits and methylation‐sensitive capture, sequence platforms with higher read outputs and longer read lengths, and automated tools for assembly. These developments allow for a much more streamlined assembly than via conventional short‐range PCR. Although newer methods make complete plastid sequencing possible for any land plant or green alga, there are still challenges for producing finished plastomes particularly from herbarium material or from structurally divergent plastids such as those of parasitic plants.  相似文献   
7.
8.
Summary Concerns about the effects of predation by Feral Cats ( Felis catus ) on native fauna, particularly breeding seabirds, precipitated a decision in 1987 to control and eventually eradicate cats from Gabo Island. The size of the population prior to control was at least 30 animals. A control programme, undertaken between 1987 and 1991, centred on shooting, trapping and an extensive 1080 poison-baiting programme. Trapping and shooting were ineffectual. Poisoning was the most successful and effective technique for the rapid and widespread reduction in the Feral Cat population on Gabo Island. The effectiveness of dead 1-day-old chickens as a poison carrier was demonstrated. Effective poison baiting was attributed to bait selection and strategic timing of baiting to periods when prey was at low levels. Outcomes from the trapping programme and post-control monitoring strongly suggested that the cat population had been reduced to only two or three animals, possibly of the same sex. Monitoring between 1992 and 1998 failed to record any evidence of cats, indicating that the cats remaining after poison baiting had been unable to sustain a viable population. On the basis of the available evidence, Feral Cats appear to have been successfully eradicated from Gabo Island.  相似文献   
9.
Background and aimsGenome size varies considerably across the diversity of plant life. Although genome size is, by definition, affected by genetic presence/absence variants, which are ubiquitous in population sequencing studies, genome size is often treated as an intrinsic property of a species. Here, we studied intra- and interspecific genome size variation in taxonomically complex British eyebrights (Euphrasia, Orobanchaceae). Our aim is to document genome size diversity and investigate underlying evolutionary processes shaping variation between individuals, populations and species.MethodsWe generated genome size data for 192 individuals of diploid and tetraploid Euphrasia and analysed genome size variation in relation to ploidy, taxonomy, population affiliation and geography. We further compared the genomic repeat content of 30 samples.Key resultsWe found considerable intraspecific genome size variation, and observed isolation-by-distance for genome size in outcrossing diploids. Tetraploid Euphrasia showed contrasting patterns, with genome size increasing with latitude in outcrossing Euphrasia arctica, but with little genome size variation in the highly selfing Euphrasia micrantha. Interspecific differences in genome size and the genomic proportions of repeat sequences were small.ConclusionsWe show the utility of treating genome size as the outcome of polygenic variation. Like other types of genetic variation, such as single nucleotide polymorphisms, genome size variation may be affected by ongoing hybridization and the extent of population subdivision. In addition to selection on associated traits, genome size is predicted to be affected indirectly by selection due to pleiotropy of the underlying presence/absence variants.  相似文献   
10.
Aim The complex palaeogeography of the Malesian archipelago, characterized by the evolution of an ever‐changing mosaic of terrestrial and marine areas throughout the Cenozoic, provides the geographic backdrop for the remarkable diversification of Malesian Begonia (> 450 species). This study aimed to investigate the origin of Malesian Begonia, the directionality of dispersal events within the Malesian archipelago and the impact of ancient water gaps on colonization patterns, and to identify drivers of diversification. Location Asia, Southeast Asia, Malesia. Methods Plastid DNA sequence data of representatives of all families of the Cucurbitales and Fagales (matK, rbcL, trnL intron, trnL–F spacer, 4076 aligned positions, 92 taxa) and a sample of all major Asian Begonia sections (ndhA intron, ndhF–rpl32 spacer, rpl32–trnL spacer, 4059 aligned positions, 112 taxa) were analysed under an uncorrelated‐rates relaxed molecular clock model to estimate the age of the Begonia crown group divergence and divergence ages within Asian Begonia. Ancestral areas were reconstructed using a likelihood approach implementing a dispersal–extinction–cladogenesis model, and with a Bayesian approach to dispersal–vicariance analysis. Results The results indicated an initial diversification of Asian Begonia in continental Asia in the Miocene, and subsequent colonization of Malesia by multiple lineages. There was support for at least six independent dispersal events from continental Asia and western Malesia to Wallacea dating from the late Miocene to the Pleistocene. Begonia section Petermannia (> 270 species) originated in Western Malesia, and subsequently dispersed to Wallacea, New Guinea and the Philippines. Lineages within this section diversified rapidly since the Pliocene, coinciding with rapid orogenesis on Sulawesi and New Guinea. Main conclusions The predominant trend of Begonia dispersals between continental Asia and Malesia, and also within Malesia, has been from west to east. The water bodies separating the Sunda Shelf region from Wallacea have been porous barriers to dispersal in Begonia following the emergence of substantial land in eastern Malesia from the late Miocene onwards. We hypothesize two major drivers of the diversification of Malesian Begonia: (1) the formation of topographical heterogeneity and the promotion of microallopatry by orogenesis in the Pliocene and Pleistocene; and (2) cyclic vicariance by frequent habitat fragmentations and amalgamations due to climate and sea‐level fluctuations during the Pleistocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号