首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   27篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   11篇
  2014年   7篇
  2013年   6篇
  2012年   10篇
  2011年   7篇
  2010年   6篇
  2009年   10篇
  2008年   9篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   7篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1984年   4篇
  1983年   2篇
  1977年   4篇
  1972年   1篇
  1971年   2篇
  1967年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
1.
Peptides and neurotransmission in the central nervous system   总被引:1,自引:0,他引:1  
Radioimmunoassays of brain extracts have shown that several peptides occur in high concentrations in the CNS. The releasing-factor peptides TRF, LRF, somatostatin, CRF and GRF have the highest concentration in the hypothalamic extracts. High levels of somatostatin, CCK octapeptide, neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) are found in cortical extracts. Substance P, CCK, NPY, and enkephalins are present in high concentrations in basal ganglia and mesolimbic areas. Pharmacological doses of these peptides result in several behavioural and vegetative effects. Immunocytochemical studies show that the CNS peptides are localised in neurones and in synaptic vesicles. In vitro studies with brain tissues show that peptides are capable of modifying the ongoing classical neurotransmission. In depressive patients several neuropeptides (CCK, CRF and NPY) have been shown to have low CSF levels. Patients dying of senile dementia have low cortical levels of somatostatin, CRF and substance P. In schizophrenic patients CCK peptides have shown to improve some symptoms. At present the therapeutic potentials of peptides are poorly known. More studies are required to understand their role in neurotransmission and related pathological states.  相似文献   
2.
A key regulator of cambial growth is the plant hormone indoleacetic acid (IAA). Here we report on altered wood characteristics and growth patterns in transgenic hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) expressing Agrobacterium tumefaciens T-DNA IAA-biosynthetic iaaM and iaaH genes. Eighteen lines simultaneously expressing both genes were regenerated. Of these, four lines, verified to be transgenic by northern blot analysis, were selected and raised under controlled growth conditions. All four lines were affected in their growth patterns, including alterations in height and stem diameter growth, internode elongation, leaf enlargement, and degree of apical dominance. Two transgenic lines, showing the most distinct phenotypic deviation from the wild type, were characterized in more detail for free and conjugated IAA levels and for wood characteristics. Both lines showed an altered IAA balance, particularly in mature leaves and roots where IAA levels were elevated. They also exhibited changes in wood anatomy, most notably a reduction in vessel size, an increase in vessel density, and changes in ray development. Thus, the recent development of techniques for gene transfer to forest trees enabled us to investigate the influence of an altered IAA balance on xylem development in an intact experimental system. In addition, the results demonstrate the possibility of manipulating wood properties in a forest tree through controlled changes of IAA concentration and distribution.  相似文献   
3.
Expression and glycosylation studies of human FGF receptor 4   总被引:2,自引:0,他引:2  
Fibroblast growth factor receptor subtype 4 (FGFR4) has been shown to have special activation properties and just one splicing form, unlike the other FGFRs. FGFR4 overexpression is correlated with breast cancer and therefore FGFR4 is a target for drug design. Our aim is to overexpress high amounts of homogeneous FGFR4 extracellular domain (FGFR4(ed)) for structural studies. We show that baculovirus-insect cell-expressed FGFR4(ed) is glycosylated on three (N88, N234, and N266) of the six possible N-glycosylation sites but is not O-glycosylated. The deglycosylated triple mutant was expressed and had binding properties similar to those of glycosylated FGFR4(ed), but was still heterogeneous. Large amounts of FGFR4(ed) have been produced into inclusion bodies in Escherichia coli and refolded at least partly correctly but the refolded E. coli-produced FGFR4(ed) still aggregates.  相似文献   
4.
In this study, we investigated the hypothesis that the pro-oxidative properties of Angeli's salt (AS), a nitroxyl anion (HNO/NO -) releasing compound, cause neurotoxicity in dopaminergic neurons. The pro-oxidative properties were demonstrated in vitro by measuring hydroxylation products of salicylate and peroxidation of lipids under various redox conditions. AS (0-1000 μM) released high amounts of hydroxylating species in a concentration dependent manner. AS also increased lipid peroxidation in brain homogenates at concentrations below 100 μM, while inhibiting it at 1000 μM concentration. The AS induced pro-oxidative effects were completely suppressed by copper (II), which converts nitroxyl anion to nitric oxide, as well as by a potent nitroxyl anion scavenger glutathione. Neurotoxicity towards dopaminergic neurons was tested in rat nigrostriatal dopaminergic system in vivo and by using primary mesencephalic dopaminergic neuronal cultures in vitro . Intranigral infusion of AS (0-400 nmol) caused neurotoxicity reflected as a dose dependent decrease of striatal dopamine seven days after treatment. The effect of the 100 nmol dose was more pronounced when measured 50 days after the infusion. Neurotoxicity was also confirmed as a decrease of tyrosine hydroxylase positive neurons in the substantia nigra. Neither sulphononoate, a close structural analog of AS, nor sodiumnitrite caused changes in striatal dopamine, thus reflecting lack of neurotoxicity. In primary dopaminergic neuronal cultures AS reduced [ 3 H] dopamine uptake with concentrations over 200 μM confirming neurotoxicity. In line with the quite low efficacy to increase lipid peroxidation in vitro , infusion of AS into substantia nigra did not cause increased formation of fluorescent products of lipid peroxidation. These results support the hypothesis that AS derived species oxidize critical thiol groups, rather than membrane lipids, potentially leading to protein oxidation/dysfunction and demonstrated neurotoxicity. These findings may have pathophysiological relevance in case of excess formation of nitroxyl anion.  相似文献   
5.
The level of indole-3-acetic acid (IAA) was locally modified in cambial tissues of transgenic aspen (Populus tremula L. x Populus tremuloides Michx.). We also demonstrate the use of a linked reporter gene to visualize the expression of the iaa genes. The rate-limiting bacterial IAA-biosynthetic gene iaaM and the reporter gene for beta-glucuronidase (GUS), uidA, were each fused to the cambial-region-specific Agrobacterium rhizogenes rolC promoter and linked on the same T-DNA. In situ hybridization of the iaaM gene confirmed that histochemical analysis of GUS activity could be used to predict iaaM gene expression. Moreover, quantitative fluorometric analysis of GUS activity allowed estimation of the level of de novo production of IAA in transgenic lines carrying a single-copy insert of the iaaM, uidA T-DNA. Microscale analysis of the IAA concentration across the cambial region tissues showed an increase in IAA concentration of about 35% to 40% in the two transgenic lines, but no changes in the radial distribution pattern of IAA compared with wild-type plants. This increase did not result in any changes in the developmental pattern of cambial derivatives or the cambial growth rate, which emphasizes the importance of the radial distribution pattern of IAA in controlling the development of secondary xylem, and suggests that a moderate increase in IAA concentration does not necessarily stimulate growth.  相似文献   
6.

Introduction

The purpose of this study was to evaluate the effects of L-4F, an apolipoprotein A-1 mimetic peptide, alone or with pravastatin, in apoE-/-Fas-/-C57BL/6 mice that spontaneously develop immunoglobulin G (IgG) autoantibodies, glomerulonephritis, osteopenia, and atherosclerotic lesions on a normal chow diet.

Methods

Female mice, starting at eight to nine weeks of age, were treated for 27 weeks with 1) pravastatin, 2) L-4F, 3) L-4F plus pravastatin, or 4) vehicle control, followed by disease phenotype assessment.

Results

In preliminary studies, dysfunctional, proinflammatory high-density lipoproteins (piHDL) were decreased six hours after a single L-4F, but not scrambled L-4F, injection in eight- to nine-week old mice. After 35 weeks, L-4F-treated mice, in the absence/presence of pravastatin, had significantly smaller lymph nodes and glomerular tufts (PL, LP < 0.05), lower serum levels of IgG antibodies to double stranded DNA (dsDNA) (PL < 0.05) and oxidized phospholipids (oxPLs) (PL, LP < 0.005), and elevated total and vertebral bone mineral density (PL, LP < 0.01) compared to vehicle controls. Although all treatment groups presented larger aortic root lesions compared to vehicle controls, enlarged atheromas in combination treatment mice had significantly less infiltrated CD68+ macrophages (PLP < 0.01), significantly increased mean α-actin stained area (PLP < 0.05), and significantly lower levels of circulating markers for atherosclerosis progression, CCL19 (PL, LP < 0.0005) and VCAM-1 (PL < 0.0002).

Conclusions

L-4F treatment, alone or with pravastatin, significantly reduced IgG anti-dsDNA and IgG anti-oxPLs, proteinuria, glomerulonephritis, and osteopenia in a murine lupus model of accelerated atherosclerosis. Despite enlarged aortic lesions, increased smooth muscle content, decreased macrophage infiltration, and decreased pro-atherogenic chemokines in L-4F plus pravastatin treated mice suggest protective mechanisms not only on lupus-like disease, but also on potential plaque remodeling in a murine model of systemic lupus erythematosus (SLE) and accelerated atherosclerosis.  相似文献   
7.
CBS (cystathionine beta-synthase) domains are found in proteins from all kingdoms of life, and point mutations in these domains are responsible for a variety of hereditary diseases in humans; however, the functions of CBS domains are not well understood. In the present study, we cloned, expressed in Escherichia coli, and characterized a family II PPase (inorganic pyrophosphatase) from Moorella thermoacetica (mtCBS-PPase) that has a pair of tandem 60-amino-acid CBS domains within its N-terminal domain. Because mtCBS-PPase is a dimer and requires transition metal ions (Co2+ or Mn2+) for activity, it resembles common family II PPases, which lack CBS domains. The mtCBS-PPase, however, has lower activity than common family II PPases, is potently inhibited by ADP and AMP, and is activated up to 1.6-fold by ATP. Inhibition by AMP is competitive, whereas inhibition by ADP and activation by ATP are both of mixed types. The nucleotides are effective at nanomolar (ADP) or micromolar concentrations (AMP and ATP) and appear to compete for the same site on the enzyme. The nucleotide-binding affinities are thus 100-10000-fold higher than for other CBS-domain-containing proteins. Interestingly, genes encoding CBS-PPase occur most frequently in bacteria that have a membrane-bound H+-translocating PPase with a comparable PP(i)-hydrolysing activity. Our results suggest that soluble nucleotide-regulated PPases act as amplifiers of metabolism in bacteria by enhancing or suppressing ATP production and biosynthetic reactions at high and low [ATP]/([AMP]+[ADP]) ratios respectively.  相似文献   
8.
Internal ribosomal entry sites (IRESs) are structured cis‐acting RNAs that drive an alternative, cap‐independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo‐EM reconstructions of the ribosome 80S‐ and 40S‐bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P‐site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA‐driven translation initiation.  相似文献   
9.
10.
Bacterial biofilms resist host defenses and antibiotics partly because of their decreased metabolism. Some bacteria use proinflammatory cytokines, such as interleukin (IL)-1β, as cues to promote biofilm formation and to alter virulence. Although one potential bacterial IL-1β receptor has been identified, current knowledge of the bacterial IL-1β sensing mechanism is limited. In chronic biofilm infection, periodontitis, Aggregatibacter actinomycetemcomitans requires tight adherence (tad)-locus to form biofilms, and tissue destroying active lesions contain more IL-1β than inactive ones. The effect of IL-1β on the metabolic activity of A. actinomycetemcomitans biofilm was tested using alamarBlue™. The binding of IL-1β to A. actinomycetemcomitans cells was investigated using transmission electron microscopy and flow cytometry. To identify the proteins which interacted with IL-1β, different protein fractions from A. actinomycetemcomitans were run in native-PAGE and blotted using biotinylated IL-1β and avidin-HRP, and identified using mass spectroscopy. We show that although IL-1β slightly increases the biofilm formation of A. actinomycetemcomitans, it reduces the metabolic activity of the biofilm. A similar reduction was observed with all tad-locus mutants except the secretin mutant, although all tested mutant strains as well as wild type strains bound IL-1β. Our results suggest that IL-1β might be transported into the A. actinomycetemcomitans cells, and the trimeric form of intracellular ATP synthase subunit β interacted with IL-1β, possibly explaining the decreased metabolic activity. Because ATP synthase is highly conserved, it might universally enhance biofilm resistance to host defense by binding IL-1β during inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号