首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
  2021年   2篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1987年   1篇
  1984年   2篇
  1957年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
2.
Bruton's tyrosine kinase (BTK) is a member of the Tec non-receptor tyrosine kinase family that is involved in regulating B cell proliferation. To better understand the enzymatic mechanism of the Tec family of kinases, the kinetics of BTK substrate phosphorylation were characterized using a radioactive enzyme assay. We first examined whether autophosphorylation regulates BTK activity. Western blotting with a phosphospecific antibody revealed that BTK rapidly autophosphorylates at Tyr(551) within its activation loop in vitro. Examination of a Y551F BTK mutant indicated that phosphorylation of Tyr(551) causes a 10-fold increase in BTK activity. We then proceeded to characterize the steady state kinetic mechanism of BTK. Varying the concentrations of ATP and S1 peptide (biotin-Aca-AAAEEIY-GEI-NH2) revealed that BTK employs a ternary complex mechanism with KmATP = 84 +/- 20 microM and KmS1 = 37 +/- 8 microM. Inhibition studies were also performed to examine the order of substrate binding. The inhibitors ADP and staurosporine were both found to be competitive with ATP and non-competitive with S1, indicating binding of ATP and S1 to BTK is either random or ordered with ATP binding first. Negative cooperativity was also found between the S1 and ATP binding sites. Unlike ATP site inhibitors, substrate analog inhibitors did not inhibit BTK at concentrations less than 1 mm, suggesting that BTK may employ a "substrate clamping" type of kinetic mechanism whereby the substrate Kd is weaker than Km. This investigation of BTK provides the first detailed kinetic characterization of a Tec family kinase.  相似文献   
3.
4.
Diverging Understandings of Forest Management in Matsutake Science. As high-value gourmet mushrooms, the matsutake complex of the genus Tricholoma has been the subject of extensive research. This article reviews two trajectories of matsutake research, showing how distinctive regional nodes may develop within a cosmopolitan modern science. The global center of matsutake research is in Japan, where problems of artificial cultivation and the “orchard-style” enhancement of production under forest conditions stimulate basic research. U.S. Pacific Northwest research forms a contrasting regional node, with a focus on sustainable yields in the context of timber production. Regional differences in research design and results point to the importance of distinctive scientific legacies, in this case formed in relation to divergent histories of forest management. Attention to regional distinctions in the framing of scientific problems is particularly important as scientific frameworks are exported to new places; for example, both Japanese and American forms of matsutake science have been extended to China. 高価なグルメきのこであるマツタケとその近縁種群のTricholoma属は広範囲に渡る科学的研究の対象となってきた。本論では二つの地域特徴的なマツタケ研究の軌跡を概観し、文化的差異を超えて世界的に通用する近代科学においても地域固有の関心に応じて特徴のある知識が結節し発展することを示す。マツタケ研究の世界的な中心地である日本では人工増殖やマツタケを殖やすための「果樹園的」な山林作りへの関心が基礎研究の方向性に刺激を与えてきた。一方日本とは対照的に、米国北西岸州では木材の持続的産出に主眼をおいた山林管理の流れの中で研究が進んできた。こうした研究計画や結果的に得られる知識の違いは、地域ごとに特徴のある科学的遺産 - 本件の場合は森林管理の歴史が多様に枝分かれしていること - に注目することが重要であることを知らせてくれる。近年日本や米国で発展したマツタケ研究の方法や成果が中国での研究にも影響を与えているが、特に新しい研究の場を広げる場合には科学的な関心、問題がどのような枠組で組み立てられるか地域によって多様であることを考慮することが重要である。  相似文献   
5.
Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat‐insulin‐promoter‐Cre (RIP‐Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT. Genetic ablation of APPL2 in RIP‐Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP‐Cre neurons, inactivation of VMH AMPK, or treatment with a β3‐adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP‐Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP‐Cre neurons, in which the APPL2–AMPK signaling axis is crucial for this defending mechanism to cold and obesity.  相似文献   
6.

Background  

While the larval-juvenile transition (metamorphosis) in the spionid polychaete Pseudopolydora vexillosa involves gradual morphological changes and does not require substantial development of juvenile organs, the opposite occurs in the barnacle Balanus amphitrite. We hypothesized that the proteome changes during metamorphosis in the spionids are less drastic than that in the barnacles. To test this, proteomes of pre-competent larvae, competent larvae (ready to metamorphose), and juveniles of P. vexillosa were compared using 2-dimensional gel electrophoresis (2-DE), and they were then compared to those of the barnacle.  相似文献   
7.
8.
9.
Cystatin M/E is a high affinity inhibitor of the asparaginyl endopeptidase legumain, and we have previously reported that both proteins are likely to be involved in the regulation of stratum corneum formation in skin. Although cystatin M/E contains a predicted binding site for papain-like cysteine proteases, no high affinity binding for any member of this family has been demonstrated so far. We report that human cathepsin V (CTSV) and human cathepsin L (CTSL) are strongly inhibited by human cystatin M/E. Kinetic studies show that Ki values of cystatin M/E for the interaction with CTSV and CTSL are 0.47 and 1.78 nM, respectively. On the basis of the analogous sites in cystatin C, we used site-directed mutagenesis to identify the binding sites of these proteases in cystatin M/E. We found that the W135A mutant was rendered inactive against CTSV and CTSL but retained legumain-inhibiting activity. Conversely, the N64A mutant lost legumain-inhibiting activity but remained active against the papain-like cysteine proteases. We conclude that legumain and papain-like cysteine proteases are inhibited by two distinct non-overlapping sites. Using immunohistochemistry on normal human skin, we found that cystatin M/E co-localizes with CTSV and CTSL. In addition, we show that CTSL is the elusive enzyme that processes and activates epidermal transglutaminase 3. The identification of CTSV and CTSL as novel targets for cystatin M/E, their (co)-expression in the stratum granulosum of human skin, and the activity of CTSL toward transglutaminase 3 strongly imply an important role for these enzymes in the differentiation process of human epidermis.  相似文献   
10.
Mutations in the NHS (Nance-Horan Syndrome) gene lead to severe congenital cataracts, dental defects and sometimes mental retardation. NHS encodes two protein isoforms, NHS-A and -1A that display cell-type dependent differential expression and localization. Here we demonstrate that of these two isoforms, the NHS-A isoform associates with the cell membrane in the presence of intercellular contacts and it immunoprecipitates with the tight junction protein ZO-1 in MDCK (Madin Darby Canine Kidney) epithelial cells and in neonatal rat lens. The NHS-1A isoform however is a cytoplasmic protein. Both Nhs isoforms are expressed during mouse development. Immunolabelling of developing mouse with the anti-NHS antibody that detects both isoforms revealed the protein in the developing head including the eye and brain. It was primarily expressed in epithelium including neural epithelium and certain vascular endothelium but only weakly expressed in mesenchymal cells. In the epithelium and vascular endothelium the protein associated with the cell membrane and co-localized with ZO-1, which indirectly indicates expression of the Nhs-A isoform in these structures. Membrane localization of the protein in the lens vesicle similarly supports Nhs-A expression. In conclusion, the NHS-A isoform of NHS is a novel interactor of ZO-1 and may have a role at tight junctions. This isoform is important in mammalian development especially of the organs in the head.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号