首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   6篇
  2018年   1篇
  2017年   3篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1987年   5篇
  1986年   1篇
  1982年   3篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
  1969年   1篇
排序方式: 共有61条查询结果,搜索用时 62 毫秒
1.
The purpose of this study was to ascertain the time course of change during both compensatory growth (hypertrophy) and subsequent growth regression on myosin isoform expression in rodent fast-twitch plantaris muscle in response to functional overload (induced by removal of synergists). Peak hypertrophy of the plantaris muscle (92%) occurred after 9 wk of overload. After 7 wk of overload regression (induced by a model of hindlimb unweighting), muscle weight returned to within 30% of control values. Myofibril protein content (mg/g muscle) remained relatively constant throughout the overload period but became significantly depressed relative to control values after 7 wk of regression. However, when expressed on a per muscle basis (mg/muscle) no differences existed at this time point (t = 7 wk regression). The distribution of native myosin isoforms in the myofibril protein pool of the overloaded plantaris muscle reflected a progressive increase (23% at t = 9 wk; P less than 0.001) in the relative proportion of slow myosin (Sm). This change was also accompanied by increases in intermediate myosin (Im) as well as the repression of the fast myosin one (Fm1) isoform (P less than 0.001). These shifts in Sm and Fm1 isoform expression were gradually reversed during the regression period, whereas Im remained elevated relative to control values. These adaptive changes in myosin isoform expression during both hypertrophy and regression were further supported by concomitant shifts in both myosin adenosinetriphosphatase (ATPase) activity (decreased during overload) and slow myosin light chain (SLC) expression. However, during regression the changes in myosin isoform expression and myosin ATPase were not as synchronous as they were during overload. Estimation of the mixed myosin heavy chain (MHC) half-life (t 1/2), using a linear model that assumes zero-order synthesis and first-order degradation kinetics, revealed t 1/2 values of approximately 19 and 10 days for the overload and regression periods, respectively. Collectively these data suggest that 1) skeletal muscle myosin isoforms and corresponding ATPase activity are in a dynamic state of change, although not completely synchronous, in response to altered muscle stress, and 2) the kinetics of change in the mixed MHC protein pool are slower during compensatory growth compared with regression of growth.  相似文献   
2.
Three adult skeletal muscle sarcomeric myosin heavy chain (MHC) genes have been identified in the rat, suggesting that the expressed native myosin isoforms can be differentiated, in part, on the basis of their MHC composition. This study was undertaken to ascertain whether the five major native isomyosins [3 fast (Fm1, Fm2, Fm3), 1 slow (Sm), and 1 intermediate (Im)], typically expressed in the spectrum of adult rat skeletal muscles comprising the hindlimb, could be further differentiated on the basis of their MHC profiles in addition to their light chain composition. Results show that in muscles comprised exclusively of fast-twitch glycolytic (FG) fibers and consisting of Fm1, Fm2, and Fm3, such as the tensor fasciae latae, only one MHC, designated as fast type IIb, could be resolved. In soleus muscle, comprised of both slow-twitch oxidative and fast-twitch oxidative-glycolytic fibers and expressing Sm and Im, two MHC bands were resolved and designated as slow/cardiac beta-MHC and fast type IIa MHC. In muscles expressing a mixture of all three fiber types and a full complement of isomyosins, as seen in the plantaris, the MHC could be resolved into three bands. Light chain profiles were characterized for each muscle type, as well as for the purified isomyosins. These data suggest that Im (IIa) consists of a mixture of fast and slow light chains, whereas Fm (IIb) and Sm (beta) isoforms consist solely of fast- and slow-type light chains, respectively. Polypeptide mapping of denatured myosin extracted from muscles expressing contrasting isoform phenotypes suggests differences in the MHC primary structure between slow, intermediate, and fast myosin isotypes. These findings demonstrate that 1) Fm, Im, and Sm isoforms are differentiated on the bases of both their heavy and light chain components and 2) each isomyosin is distributed in a characteristic fashion among rat hindlimb skeletal muscles. Furthermore, these data suggest that the ratio of isomyosins in a given muscle or muscle region is of physiological importance to the function of that muscle during muscular activity.  相似文献   
3.
Cortical granules, which are specialized secretory organelles found in ova of many organisms, have been isolated from the eggs of the sea urchins Arbacia punctulata and Strongylocentrtus pupuratus by a simple, rapid procedure. Electron micropscope examination of cortical granules prepared by this procedure reveals that they are tightly attached to large segments of the plasma membrane and its associated vitelline layer. Further evidence that he cortical granules were associated with these cell surface layers was obtained by (125)I-labeling techniques. The cortical granule preparations were found to be rich in proteoesterase, which was purified 32-fold over that detected in a crude homogenate. Similarly, the specific radioactivity of a (125)I-labeled, surface glycoprotein was increased 40-fold. These facts, coupled with electron microscope observations, indicate the isolation procedure yields a preparation in which both the cortical granules and the plasma membrane-vitelline layer are purified to the same extent. Gel electrophoresis of the membrane-associated cortical granule preparation reveals the presence of at least eight polypeptides. The major polypeptide, which is a glycotprotein of apparent mol wt of 100,000, contains most of the radioactivity introduced by (125)I-labeling of the intact eggs. Lysis of the cortical granules is observed under hypotonic conditions, or under isotonic conditions if Ca(2+) ion is present. When lysis is under isotonic conditions is induced by addition of Ca(2+) ion, the electron-dense contents of the granules remain insoluble. In contrast, hypotonic lysis results in release of the contents of the granule in a soluble form. However, in both cases the (125)I-labeled glycoprotein remains insoluble, presumably because it is a component of either the plasma membrane or the vitelline layer. All these findings indicate that, using this purified preparation, it should be possible to carry out in vitro studies to better define some of the initial, surface-related events observed in vivo upon fertilization.  相似文献   
4.
5.
Arginine decarboxylase (ADC) is an important enzyme in the production of putrescine and polyamines in plants. It is encoded by a single or low-copy nuclear gene that lacks introns in sequences studied to date. The rate of Adc amino acid sequence evolution is similar to that of ndhF for the angiosperm family studied. Highly conserved regions provide several target sites for PCR priming and sequencing and aid in nucleotide and amino acid sequence alignment across a range of taxonomic levels, while a variable region provides an increased number of potentially informative characters relative to ndhF for the taxa surveyed. The utility of the Adc gene in plant molecular systematic studies is demonstrated by analysis of its partial nucleotide sequences obtained from 13 representatives of Brassicaceae and 3 outgroup taxa, 2 from the mustard oil clade (order Capparales) and 1 from the related order Malvales. Two copies of the Adc gene, Adc1 and Adc2, are found in all members of the Brassicaceae studied to data except the basal genus Aethionema. The resulting Adc gene tree provides robust phylogenetic data regarding relationships within the complex mustard family, as well as independent support for proposed tribal realignments based on other molecular data sets such as those from chloroplast DNA.   相似文献   
6.

Background

Neuropathic pain must be correctly diagnosed for optimal treatment. The questionnaire named Neuropathic Pain Symptom Inventory (NPSI) was developed in its original French version to evaluate the different symptoms of neuropathic pain. We hypothesized that the NPSI might also be used to differentiate neuropathic from non-neuropathic pain.

Methods

We translated the NPSI into German using a standard forward-backward translation and administered it in a case-control design to patients with neuropathic (n = 68) and non-neuropathic pain (headache and osteoarthritis, n = 169) to validate it and to analyze its discriminant properties, its sensitivity to change, and to detect neuropathic pain subgroups with distinct profiles.

Results

Using a sum score (the NPSI-G score), we found sensitivity to change (r between 0.37 and 0.5 for pain items of the graded chronic pain scale) and could distinguish between neuropathic and other pain on a group basis, but not for individual patients. Post hoc development of a discriminant score with optimized diagnostic properties to distinguish neuropathic pain from non-neuropathic pain resulted in an instrument with high sensitivity (91%) and acceptable specificity (70%). We detected six different pain profiles in the patient group with neuropathic pain; three profiles were found to be distinct.

Conclusions

The NPSI-G potentially combines the properties of a diagnostic tool and an instrument to identify subtypes of neuropathic pain.  相似文献   
7.
8.
9.
The Pdss2 gene product is needed for the isoprenylation of benzoquinone to generate coenzyme Q (CoQ). A fatal kidney disease occurs in mice that are homozygous for a missense mutation in Pdss2, which can be recapitulated in conditional Pdss2 knockouts targeted to glomerular podocytes. We now report that homozygous missense mutants also demonstrate significant neuromuscular deficits, as validated by behavioral and coordination assays, and these deficits are recapitulated in conditional Pdss2 knockouts targeted to dopaminergic neurons. Both conditional knockout and missense mutant mice demonstrate deficiencies in tyrosine hydroxylase-positive neurons in the substantia nigra, implicating a pathology similar to sporadic Parkinson's disease (PD).  相似文献   
10.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of autosomal dominant familial Parkinson''s disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase enzymatic domains. Disease-associated mutations in LRRK2 variably influence enzymatic activity with the common G2019S variant leading to enhanced kinase activity. Mutant LRRK2 induces neuronal toxicity through a kinase-dependent mechanism suggesting that kinase activity is important for mediating the pathogenic effects of LRRK2 mutations. A number of LRRK2 kinase substrates have been identified in vitro but whether they represent authentic physiological substrates in mammalian cells or tissues is not yet clear. The eukaryotic initiation factor 4E (eIF4E)-binding protein, 4E-BP1, was recently identified as a potential substrate of LRRK2 kinase activity in vitro and in Drosophila with phosphorylation occurring at Thr37 and Thr46. Here, we explore a potential interaction of LRRK2 and 4E-BP1 in mammalian cells and brain. We find that LRRK2 can weakly phosphorylate 4E-BP1 in vitro but LRRK2 overexpression is not able to alter endogenous 4E-BP1 phosphorylation in mammalian cells. In mammalian neurons LRRK2 and 4E-BP1 display minimal co-localization, whereas the subcellular distribution, protein complex formation and covalent post-translational modification of endogenous 4E-BP1 are not altered in the brains of LRRK2 knockout or mutant LRRK2 transgenic mice. In the brain, the phosphorylation of 4E-BP1 at Thr37 and Thr46 does not change in LRRK2 knockout or mutant LRRK2 transgenic mice, nor is 4E-BP1 phosphorylation altered in idiopathic or G2019S mutant PD brains. Collectively, our results suggest that 4E-BP1 is neither a major nor robust physiological substrate of LRRK2 in mammalian cells or brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号