首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2022年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
The work was focused on the investigation of possible dependencies between the development of viral infection in plants and the presence of high heavy metal concentrations in soil. Field experiments have been conducted in order to study the development of systemic tobacco mosaic virus (TMV) infection in Lycopersicon esculentum L. cv. Miliana plants under effect of separate salts of heavy metals Cu, Zn and Pb deposited in soil. As it is shown, simultaneous effect of viral infection and heavy metals in tenfold maximum permissible concentration leads to decrease of total chlorophyll content in experiment plants mainly due to the degradation of chlorophyll a. The reduction of chlorophyll concentration under the combined influence of both stress factors was more serious comparing to the separate effect of every single factor. Plants' treatment with toxic concentrations of lead and zinc leaded to slight delay in the development of systemic TMV infection together with more than twofold increase of virus content in plants that may be an evidence of synergism between these heavy metal's and virus' effects. Contrary, copper although decreased total chlorophyll content but showed protective properties and significantly reduced amount of virus in plants.  相似文献   
2.

Backgroud  

Extramedullary hematopoiesis (EMH) is defined as the presence of hematopoietic stem cells such as erythroid and myeloid lineage plus megakaryocytes in extramedullary sites like liver, spleen and lymph nodes and is usually associated with either bone marrow or hematological disorders. Mammary EMH is a rare condition either in human and veterinary medicine and can be associated with benign mixed mammary tumors, similarly to that described in this case.  相似文献   
3.
4.
Genomic hypomethylation is a consistent finding in both human and animal tumors and mounting experimental evidence suggests a key role for epigenetic events in tumorigenesis. Furthermore, it has been suggested that early changes in DNA methylation and histone modifications may serve as sensitive predictive markers in animal testing for carcinogenic potency of environmental agents. Alterations in metabolism of methyl donors, disturbances in activity and/or expression of DNA methyltransferases, and presence of DNA single-strand breaks could contribute to the loss of cytosine methylation during carcinogenesis; however, the precise mechanisms of genomic hypomethylation induced by chemical carcinogens remain largely unknown. This study examined the mechanism of DNA hypomethylation during hepatocarcinogenesis induced by peroxisome proliferators WY-14,643 (4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid) and DEHP (di-(2-ethylhexyl)phthalate), agents acting through non-genotoxic mode of action. In the liver of male Fisher 344 rats exposed to WY-14,643 (0.1% (w/w), 5 months), the level of genomic hypomethylation increased by approximately 2-fold, as compared to age-matched controls, while in the DEHP group (1.2% (w/w), 5 months) DNA methylation did not change. Global DNA hypomethylation in livers from WY-14,643 group was accompanied by the accumulation of DNA single-strand breaks, increased cell proliferation, and diminished expression of DNA methyltransferase 1, while the metabolism of methyl donors was not affected. In contrast, none of these parameters changed significantly in rats fed DEHP. Since WY-14,643 is much more potent carcinogen than DEHP, we conclude that the extent of loss of DNA methylation may be related to the carcinogenic potential of the chemical agent, and that accumulation of DNA single-strand breaks coupled to the increase in cell proliferation and altered DNA methyltransferase expression may explain genomic hypomethylation during peroxisome proliferator-induced carcinogenesis.  相似文献   
5.
Altered DNA methylation has been linked to neoplastic cell transformation and is a hallmark of cancer progression. Therefore, the screening for differentially methylated sequences as tumor biomarkers has a significant implication in the clinical setting. To determine the cancer-linked alterations in DNA methylation pattern, we have applied an endonuclease, McrBC, to the existing methylation-sensitive arbitrarily primed polymerase chain reaction (msAP-PCR) method and developed McrBC-msAP-PCR. This modified approach allows detection of differentially methylated sites within unmethylated DNA domains enriched by regulatory sequences and CpG islands. In this method, we used digestion of DNA with the McrBC methylation-sensitive endonuclease to selectively exclude the methylated fraction of DNA, which comprises interspersed and tandem-repeated sequences and exons other than first exons, from analysis. The subsequent digestion of unmethylated DNA fragments with SmaI and HpaII methylation-sensitive restriction endonucleases followed by AP-PCR amplification resulted in the detection of unknown unique sequences associated with cancer-linked methylation changes in genomic DNA. Hypermethylation and hypomethylation are visualized by the increase or decrease in the band intensity of DNA fingerprints. By using this technique, we were able to differentiate clearly, identify, and characterize a number of novel unique DNA sequences with differentially methylated sites in normal and breast cancer cell lines and in normal and rat tumor liver tissues.  相似文献   
6.
The molecular pathogenesis of autism is complex and involves numerous genomic, epigenomic, proteomic, metabolic, and physiological alterations. Elucidating and understanding the molecular processes underlying the pathogenesis of autism is critical for effective clinical management and prevention of this disorder. The goal of this study is to investigate key molecular alterations postulated to play a role in autism and their role in the pathophysiology of autism. In this study we demonstrate that DNA isolated from the cerebellum of BTBR T+tf/J mice, a relevant mouse model of autism, and from human post-mortem cerebellum of individuals with autism, are both characterized by an increased levels of 8-oxo-7-hydrodeoxyguanosine (8-oxodG), 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC). The increase in 8-oxodG and 5mC content was associated with a markedly reduced expression of the 8-oxoguanine DNA-glycosylase 1 (Ogg1) and increased expression of de novo DNA methyltransferases 3a and 3b (Dnmt3a and Dnmt3b). Interestingly, a rise in the level of 5hmC occurred without changes in the expression of ten-eleven translocation expression 1 (Tet1) and Tet2 genes, but significantly correlated with the presence of 8-oxodG in DNA. This finding and similar elevation in 8-oxodG in cerebellum of individuals with autism and in the BTBR T+tf/J mouse model warrant future large-scale studies to specifically address the role of OGG1 alterations in pathogenesis of autism.  相似文献   
7.
Thymus, an important component of hematopoietic tissue, is a well-documented "target" of radiation carcinogenesis. Both acute and fractionated irradiation result in a high risk of leukemia and thymic lymphoma. However, the exact mechanisms underlying radiation-induced predisposition to leukemia and lymphoma are still unknown, and the contributions of genetic and epigenetic mechanisms in particular have yet to be defined. Global DNA hypomethylation is a well-known characteristic of cancer cells. Recent studies have also shown that tumor cells undergo prominent changes in histone methylation, particularly a substantial loss of trimethylation of histone H4-Lys20 and demethylation of genomic DNA. These losses are considered a universal marker of malignant transformation. In the present study, we investigated the effect of low-dose radiation exposure on the accumulation of DNA lesions and alterations of DNA methylation and histone H4-Lys20 trimethylation in the thymus tissue using an in vivo murine model. For the first time, we show that fractionated whole-body application of 0.5 Gy X-ray leads to decrease in histone H4-Lys20 trimethylation in the thymus. The loss of histone H4-Lys20 trimethylation was accompanied by a significant decrease in global DNA methylation as well as the accumulation of DNA damage as monitored by persistence of histone gammaH2AX foci in the thymus tissue of mice exposed to fractionated irradiation. Altered DNA methylation was associated with reduced expression of maintenance (DNMT1) and, to a lesser extent, de novo DNA methyltransferase DNMT3a in exposed animals. Expression of another de novo DNA methyltransferase DNMT3b was decreased only in males. Irradiation also resulted in approximately 20% reduction in the levels of methyl-binding proteins MeCP2 and MBD2. Our results show the involvement of epigenetic alterations in radiation-induced responses in vivo. These changes may play a role in genome destabilization that ultimately leads to cancer.  相似文献   
8.
Dietary methyl group deprivation is now well recognized as a model of hepatocarcinogenesis in rodents. In the present study, we examined the effects of feeding a methyl-deficient diet followed by a methyl-adequate diet on the extent of methylation of liver DNA and on the formation and evolution of altered hepatic foci. Male F344 rats were fed a methyl-deficient diet for 9, 18, 24, and 36 weeks, followed by re-feeding a methyl-adequate diet for a total of 54 weeks. Similar to previous findings, the methyl-deficient diet resulted in decreased levels of S-adenosylmethionine (SAM), SAM/SAH ratios, and global DNA hypomethylation. Feeding the methyl-adequate diet restored the liver SAM levels and SAM/SAH ratios to control levels in all experimental groups. In contrast, re-feeding the complete diet restored DNA methylation to normal level only in the group that had been fed the methyl-deficient diet for 9 weeks; in animals exposed to methyl deprivation longer, the methyl-adequate diet failed to reverse the hypomethylation of DNA. Liver tissue of rats exposed to methyl deficiency for 9, 18, 24, or 36 weeks was characterized by the persistent presence of placental isoform of glutathione-S-transferase (GSTpi)-positive lesions despite re-feeding the methyl-adequate diet. The persistence of altered hepatic foci in liver after withdrawal of methyl-deficient diet serves as an indication of the carcinogenic potential of a methyl-deficient diet. Substitution of the methyl-deficient diet with complete diet failed to prevent the expansion of initiated foci and restore DNA methylation in animals exposed to deficiency for 18, 24, or 36 weeks. The association between DNA hypomethylation and expansion of foci suggests that stable DNA hypomethylation is a promoting factor for clonal expansion of initiated cells. These results provide an experimental evidence and a mechanistic basis by which epigenetic alterations may contribute to the initiation and promotion steps of carcinogenesis.  相似文献   
9.
Micro RNAs (miRNAs) are small non-coding RNA molecules that function as negative regulators of gene expression. They play a crucial role in the regulation of genes involved in the control of development, cell proliferation, apoptosis, and stress response. Although miRNA levels are substantially altered in tumors, their role in carcinogenesis, specifically at the early pre-cancerous stages, has not been established. Here we report that exposure of Fisher 344 rats to tamoxifen, a potent hepatocarcinogen in rats, for 24 weeks leads to substantial changes in the expression of miRNA genes in the liver. We noted a significant up-regulation of known oncogenic miRNAs, such as the 17-92 cluster, miR-106a, and miR-34. Furthermore, we confirmed the corresponding changes in the expression of proteins targeted by these miRNAs, which include important cell cycle regulators, chromatin modifiers, and expression regulators implicated in carcinogenesis. All these miRNA changes correspond to previously reported alterations in full-fledged tumors, including hepatocellular carcinomas. Thus, our findings indicate that miRNA changes occur prior to tumor formation and are not merely a consequence of a transformed state.  相似文献   
10.
Glycoconjugate Journal - Glycosaminoglycans (GAGs) are bioactive polysaccharides or glycoconjugates found in the fish waste having significant health impacts. In the present study it has been...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号