首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   9篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   14篇
  2012年   14篇
  2011年   21篇
  2010年   7篇
  2009年   4篇
  2008年   6篇
  2007年   9篇
  2006年   9篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   8篇
  1997年   5篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1986年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
  1970年   3篇
  1965年   1篇
排序方式: 共有191条查询结果,搜索用时 42 毫秒
1.
Parkinson’s disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation of energy metabolism, mostly through the loss of complex I efficiency, is involved in disease progression in both the genetic and sporadic forms of the disease. In this study, we investigated energy deregulation in the cerebral tissue of animal models (genetic and toxin induced) of PD using an approach that combines metabolomics and mathematical modelling. In a first step, quantitative measurements of energy-related metabolites in mouse brain slices revealed most affected pathways. A genetic model of PD, the Park2 knockout, was compared to the effect of CCCP, a complex I blocker. Model simulated and experimental results revealed a significant and sustained decrease in ATP after CCCP exposure, but not in the genetic mice model. In support to data analysis, a mathematical model of the relevant metabolic pathways was developed and calibrated onto experimental data. In this work, we show that a short-term stress response in nucleotide scavenging is most probably induced by the toxin exposure. In turn, the robustness of energy-related pathways in the model explains how genetic perturbations, at least in young animals, are not sufficient to induce significant changes at the metabolite level.  相似文献   
2.
The effects of the trichothecene mycotoxins (acetyl T-2 toxin, T-2 toxin, HT-2 toxin, palmityl T-2 toxin, diacetoxyscirpenol (DAS), deoxynivalenol (DON), and T-2 tetraol) on bovine platelet function were examined in homologous plasma stimulated with platelet activating factor (PAF). The mycotoxins inhibited platelet function with the following order of potency: acetyl T-2 toxin > palmityl T-2 toxin = DAS > HT-2 toxin = T-2 toxin. While T-2 tetraol was completely ineffective as an inhibitor, DON exhibited minimal inhibitory activity at concentrations above 10×10?4M. The stability of the platelet aggregates formed was significantly reduced in all mycotoxin treated platelets compared to that of the untreated PAF controls. It is suggested that the increased sensitivity of PAF stimulated bovine platelets to the more lipophilic mycotoxins may be related to their more efficient partitioning into the platelet membrane compared to the more hydrophilic compounds.  相似文献   
3.
Plasma epinephrine and norepinephrine concentrations were measured in the aorta and phrenicoabdominal vein in five dogs at rest and during short-duration mild- and moderate-intensity exercise and during prolonged mild-intensity exercise. Plasma epinephrine and norepinephrine concentrations increased with exercise in both the aorta and the phrenicoabdominal vein. Plasma epinephrine concentration was much higher in the phrenicoabdominal vein than in the aorta (24-43 times). Plasma epinephrine concentrations in the aorta and phrenicoabdominal vein were significantly correlated (r = 0.88). This confirms that peripheral epinephrine concentration is a reliable index of the activity of the adrenal medulla during exercise. The epinephrine-to-norepinephrine ratio in the phrenicoabdominal vein was stable (4:1) throughout the experimental protocol, suggesting that the proportion of the two amines released by the adrenal medulla did not vary through this range of adrenal activity in dogs.  相似文献   
4.
During the period of COVID-19, the occurrences of mucormycosis in immunocompromised patients have increased significantly. Mucormycosis (black fungus) is a rare and rapidly progressing fungal infection associated with high mortality and morbidity in India as well as globally. The causative agents for this infection are collectively called mucoromycetes which are the members of the order Mucorales. The diagnosis of the infection needs to be performed as soon as the occurrence of clinical symptoms which differs with types of Mucorales infection. Imaging techniques magnetic resonance imaging or computed tomography scan, culture testing, and microscopy are the approaches for the diagnosis. After the diagnosis of the infection is confirmed, rapid action is needed for the treatment in the form of antifungal therapy or surgery depending upon the severity of the infection. Delaying in treatment declines the chances of survival. In antifungal therapy, there are two approaches first-line therapy (monotherapy) and combination therapy. Amphotericin B ( 1 ) and isavuconazole ( 2 ) are the drugs of choice for first-line therapy in the treatment of mucormycosis. Salvage therapy with posaconazole ( 3 ) and deferasirox ( 4 ) is another approach for patients who are not responsible for any other therapy. Adjunctive therapy is also used in the treatment of mucormycosis along with first-line therapy, which involves hyperbaric oxygen and cytokine therapy. There are some drugs like VT-1161 ( 5 ) and APX001A ( 6 ), Colistin, SCH 42427, and PC1244 that are under clinical trials. Despite all these approaches, none can be 100% successful in giving results. Therefore, new medications with favorable or little side effects are required for the treatment of mucormycosis.  相似文献   
5.
6-hydroxydopamine (6-OHDA) was utilised for the study of the sympathetic nervous system in the resting rats and rats submitted to prolonged exercise. In order to reduce the acute physiological stress associated with an injection of 6-OHDA, beta-1 and alpha-1 adrenoceptors were blocked before the treatment leading to sympathectomy. Sympathectomised rats were divided in two groups: one sacrificed at rest, 24 hours after the treatment. The other group was sacrificed after a treadmill exercise to exhaustion. Running time to exhaustion was 36.0 +/- 4.5 min (mean +/- S.E.M.). This group ran significantly less than a control group brought to exhaustion in 73.7 +/- 10.0 min of exercise (P < 0.05). In order to make appropriate comparisons, another control group was run for 36 min. Some differences were observed between corresponding control and sympathectomized groups. At rest: 1) a lower plasma level of insulin, and 2) a higher plasma free fatty acid concentration were observed in sympathectomized rats. After 36 min of exercise: 1) a lower plasma concentration of norepinephrine, 2) no decrease of the plasma level of insulin, 3) no increase in the plasma glucagon concentration, and 4) a higher plasma glucose level were observed in sympathectomised rats when compared to control rats running for the same time. The lower plasma norepinephrine concentration in exercised sympathectomised rats suggests a lower sympathetic nervous activity in these animals than in control rats. The absence of a decrease of plasma insulin concentration and of an increase in glucagon can be attributed to this lower sympathetic activity in sympathectomised rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
AR Boobis  MB Slade  C Stern  KM Lewis  DS Davies 《Life sciences》1981,29(14):1443-1448
Cytochrome P-448 (mol wt 55,000 Daltons) from rabbit liver was purified to a specific content of 16.6 nmol/mg. Mice were immunised with this preparation, their spleens removed and dissociated lymphocytes hybridised with myeloma cells. Four monoclonal antibodies against cytochrome P-448 were raised and partially characterised. All four antibodies interacted with cytochrome P-448 in intact microsomal fractions and selectively immunoadsorbed cytochrome P-448 from solubilised microsomal preparations. One of the antibodies inhibited benzo[a] pyrene hydroxylase activity in a reconstituted system, one had no effect on activity and two increased activity. The possible applications of such antibodies are discussed.  相似文献   
7.
The striatum is predominantly composed of medium spiny neurons (MSNs) that send their axons along two parallel pathways known as the direct and indirect pathways. MSNs from the direct pathway express high levels of D1 dopamine receptors, while MSNs from the indirect pathway express high levels of D2 dopamine receptors. There has been much debate over the extent of colocalization of these two major dopamine receptors in MSNs of adult animals. In addition, the ontogeny of the segregation process has never been investigated. In this paper, we crossed bacterial artificial chromosome drd1a-tdTomato and drd2-GFP reporter transgenic mice to characterize these models and estimate D1-D2 co-expression in the developing striatum as well as in striatal primary cultures. We show that segregation is already extensive at E18 and that the degree of co-expression further decreases at P0 and P14. Finally, we also demonstrate that cultured MSNs maintain their very high degree of D1-D2 reporter protein segregation, thus validating them as a relevant in vitro model.  相似文献   
8.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
9.
Dopamine (DA) neurons can release DA not just from axon terminals, but also from their somatodendritic (STD) compartment through a mechanism that is still incompletely understood. Using voltammetry in mouse mesencephalic brain slices, we find that STD DA release has low capacity and shows a calcium sensitivity that is comparable to that of axonal release. We find that the molecular mechanism of STD DA release differs from axonal release with regard to the implication of synaptotagmin (Syt) calcium sensors. While individual constitutive knockout of Syt4 or Syt7 is not sufficient to reduce STD DA release, the removal of both isoforms reduces this release by approximately 50%, leaving axonal release unimpaired. Our work unveils clear differences in the mechanisms of STD and axonal DA release.  相似文献   
10.
Autographa californica M nucleopolyhedrovirus (AcMNPV) can infect and kill a wide range of larval lepidopteran hosts, but the dosage required to achieve mortal infection varies greatly. Using a reporter gene construct, we identified key differences between AcMNPV pathogenesis in Heliothis virescens and Helicoverpa zea, a fully permissive and a semipermissive host, respectively. Even though there was more than a 1,000-fold difference in the susceptibilities of these two species to mortal infection, there was no significant difference in their susceptibilities to primary infections in the midgut or secondary infections in the tracheal epidermis. Foci of infection within the tracheal epidermis of H. zea, however, were melanized and encapsulated by 48 h after oral inoculation, a host response not observed in H. virescens. Further, H. zea hemocytes, unlike those of H. virescens, were highly resistant to AcMNPV infection; reporter gene expression was observed only rarely even though virus was taken up readily, and nucleocapsids were transported to the nucleus. Collectively, these results demonstrated that hemocytes-by removing virus from the hemolymph instead of amplifying it and by participating in the encapsulation of infection foci-together with the host's melanization response, formed the basis of H. zea's resistance to fatal infection by AcMNPV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号