首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   19篇
  2022年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   7篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   3篇
  1982年   7篇
  1981年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有97条查询结果,搜索用时 31 毫秒
1.
Summary Two methods have been developed in order to discriminate between lateral roots, nodules and root-derived structures which exhibit both root and nodule histological features and which can develop on legumes inoculated with certainRhizobium mutants. The first method, known as the clearing method, allows the observation by light microscopy of cleared undissected root-structures. The second, known as the slicing method, is a complementary technique which provides a greater degree of structural information concerning such structures. The two methods have proved invaluable in defining unequivocally the nature of the interaction between a rhizobial strain and a legume host.  相似文献   
2.
3.
Anomalous nodulation of Trifolium subterraneum (subterranean clover) roots by Rhizobium leguminosarum 1020 was examined as a model of modified host-specificity in a Rhizobium-legume symbiosis. Consistent with previous reports, these nodules (i) appeared most often at sites of secondary root emergence, (ii) were ineffective in nitrogen fixation and (iii) were as numerous as nodules formed by an effective Rhizobium trifolii strain. R. leguminosarum 1020, grown on agar plates or in the clover root environment, did not bind the white clover lectin, trifoliin A. This strain did not attach in high numbers, and did not induce shepherd's crooks or infection threads, in subterranean clover root hairs. However, R. leguminosarum 1020 did cause branching, moderate curling and other deformations of root hairs. The bacteria probably entered the clover root through breaks in the epidermis at sites of lateral root emergence. The anomalous nodulation was inhibited by nitrate. Only trace amounts of leghaemoglobin were detected in the nodules by Western blot analysis. The nodules were of the meristematic type and initially contained well-developed infection, bacteroid and senescent zones. Infection threads were readily found in the infection zone of the nodule. However, the bacteroid-containing tissue senesced more rapidly than in the effective symbiosis between subterranean clover and R. trifolii 0403. This anomalous nodulation of subterranean clover by R. leguminosarum 1020 suggests a naturally-occurring alternative route of infection that allows Rhizobium to enlarge its host range.  相似文献   
4.
The pSym megaplasmid of Rhizobium meliloti 2011 mobilized by plasmid RP4, or plasmid pGMI42, an RP4-prime derivative which carries a 290-kilobase pSym fragment including nitrogenase and nod genes, was introduced into Agrobacterium tumefaciens. The resulting transconjugants induced root deformations specifically on the homologous hosts Medicago sativa and Melilotus alba and not on the heterologous hosts Trifolium pratense and Trifolium repens. The root deformations were shown to be genuine nodules by physiological and cytological studies. Thus, host specificity nodulation genes are located on the pSym megaplasmid. Host nodulation specificity did not seem to require recognition at the root hair level since no infection threads could be detected in the root hairs. Cytological observations indicated that bacteria penetrated only the superficial layers of the host root tissue by an atypical infection process. The submeristematic zone and the central tissue of the nodules were bacteria free. Thus, nodule organogenesis was probably triggered from a distance by the bacteria. Agrobacterium transconjugants carrying pSym induced the formation of more numerous and larger nodules than those carrying the RP4-prime plasmid pGMI42, suggesting that some genes influencing nodule organogenesis are located in a pSym region(s) outside that which has been cloned into pGMI42.  相似文献   
5.
6.
7.
Nodulation, the organogenetic process resulting from the symbiotic interaction between Rhizobium and legumes, is under the feedback control of the plant. However, the autoregulatory mechanisms controlling root nodule formation are poorly understood. In this paper it is shown that alfalfa can react to infection by its symbiont Rhizobium meliloti by eliciting a defence mechanism similar to the hypersensitive reaction (HR) observed in incompatible plant-pathogen interactions. After the first nodule primordia have been induced, an increasing proportion of infection threads abort in a single or a few root cortical cells in which both symbionts simultaneously undergo necrosis. Autofluorescent, cytochemical and immunolocalization assays revealed that phenolic compounds and proteins associated with defence mechanisms in plants have accumulated in the necrotic cells. These results lead to the proposition that the elicitation of a HR is part of the mechanism by which the plant controls infection and, therefore, regulates nodulation.  相似文献   
8.
本文通过建立图象分析方法对免疫组织化学反应结果进行定量,检测观察H-ras在口腔颊粘膜上皮在正常(N)、慢性炎症(IF)、癌旁上皮(EAC)和鳞癌(SCC)的变化过程中的表达并进行分析。结果显示H-ras在SCC组中,以中等分化的SCC无论是H-ras表达的量还是细胞阳性率都较高。此外,组织学观察显示,H-ras在处于分化末期但尚未角化的正常上皮细胞中有较高的表达。本文结果显示了H-ras的过表达与上皮细胞的会化程度密切相关。本研究还显示,所采用的阳性区域透光值、平均总透光值及阳性反应区域与阴性反应区域比值可靠并有相关性。这进一步说明了用免疫组化定量方法检测H-ras癌基因表达的精确和可靠性。  相似文献   
9.
The time course and orientation of attachment of Rhizobium trifolii 0403 to white clover root hairs was examined in slide cultures by light and electron microscopy. Inocula were grown for 5 days on defined BIII agar medium and represented the large subpopulation of fully encapsulated single cells which uniformly bind the clover lectin trifoliin A. When 10(7) cells or more were added per seedling, bacteria attached within minutes, forming randomly oriented clumps at the root hair tips. Several hours later, single cells attached polarly to the sides of the root hair. This sequence of attachment to clover root hairs was selective for R. trifolii at inoculum sizes of 10(7) to 4 X 10(8) per seedling, specifically inhibited if 2-deoxy-D-glucose, a hapten for trifoliin A, was present in the inoculum, and not observed when 4 X 10(8) cells were added to alfalfa seedling roots or to large clover root cell wall fragments which lacked trifoliin A but still had trifoliin A receptors. Once attached, R. trifolii 0403 became progressively less detachable with 2-deoxy-D-glucose. At smaller inoculum sizes (10(5) to 10(6) cells per seedling), there was no immediate clumping of R. trifolii at clover root hair tips, although polar binding of bacteria along the root hair surface was observed after 4 h. The interface between polarly attached bacteria and the root hair cell wall was shown to contain trifoliin A by immunofluorescence microscopy. Also, this interface was shown by transmission electron microscopy to contain electron-dense granules of host origin. Scanning electron microscopy revealed an accumulation of extracellular microfibrils associated with the lateral and polar surfaces of the attached bacteria, detectable after 12 h of incubation with seedling roots. At this same time, there was a significant reduction in the effectiveness of 2-deoxy-D-glucose in dislodging bacteria already attached to root hairs and an increase in firm attachment of bacteria to the root hair surface, which withstood the hydrodynamic shear forces of high-speed vortexing. These results are interpreted as a sequence of phases in attachment, beginning with specific reversible interactions between bacterial and plant surfaces (phase I attachment), followed by production of extracellular microfibrils which firmly anchor the bacterium to the root hair (phase 2 adhesion). Thus, attachment of R. trifolii to clover root hairs is a specific process requiring more than just the inherent adhesiveness of the bacteria to the plant cell wall.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
10.
The time course and orientation of attachment of Rhizobium trifolii 0403 to white clover root hairs was examined in slide cultures by light and electron microscopy. Inocula were grown for 5 days on defined BIII agar medium and represented the large subpopulation of fully encapsulated single cells which uniformly bind the clover lectin trifoliin A. When 10(7) cells or more were added per seedling, bacteria attached within minutes, forming randomly oriented clumps at the root hair tips. Several hours later, single cells attached polarly to the sides of the root hair. This sequence of attachment to clover root hairs was selective for R. trifolii at inoculum sizes of 10(7) to 4 X 10(8) per seedling, specifically inhibited if 2-deoxy-D-glucose, a hapten for trifoliin A, was present in the inoculum, and not observed when 4 X 10(8) cells were added to alfalfa seedling roots or to large clover root cell wall fragments which lacked trifoliin A but still had trifoliin A receptors. Once attached, R. trifolii 0403 became progressively less detachable with 2-deoxy-D-glucose. At smaller inoculum sizes (10(5) to 10(6) cells per seedling), there was no immediate clumping of R. trifolii at clover root hair tips, although polar binding of bacteria along the root hair surface was observed after 4 h. The interface between polarly attached bacteria and the root hair cell wall was shown to contain trifoliin A by immunofluorescence microscopy. Also, this interface was shown by transmission electron microscopy to contain electron-dense granules of host origin. Scanning electron microscopy revealed an accumulation of extracellular microfibrils associated with the lateral and polar surfaces of the attached bacteria, detectable after 12 h of incubation with seedling roots. At this same time, there was a significant reduction in the effectiveness of 2-deoxy-D-glucose in dislodging bacteria already attached to root hairs and an increase in firm attachment of bacteria to the root hair surface, which withstood the hydrodynamic shear forces of high-speed vortexing. These results are interpreted as a sequence of phases in attachment, beginning with specific reversible interactions between bacterial and plant surfaces (phase I attachment), followed by production of extracellular microfibrils which firmly anchor the bacterium to the root hair (phase 2 adhesion). Thus, attachment of R. trifolii to clover root hairs is a specific process requiring more than just the inherent adhesiveness of the bacteria to the plant cell wall.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号