首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2021年   1篇
  2016年   2篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  1999年   1篇
  1992年   1篇
排序方式: 共有10条查询结果,搜索用时 0 毫秒
1
1.
Ferredoxins, iron-sulfur (Fe-S) cluster proteins, play a key role in oxidoreduction reactions. To date, evolutionary analysis of these proteins across the domains of life have been confined to observing the abundance of Fe-S cluster types (2Fe-2S, 3Fe-4S, 4Fe-4S, 7Fe-8S (3Fe-4s and 4Fe-4S) and 2[4Fe-4S]) and the diversity of ferredoxins within these cluster types was not studied. To address this research gap, here we propose a subtype classification and nomenclature for ferredoxins based on the characteristic spacing between the cysteine amino acids of the Fe-S binding motif as a subtype signature to assess the diversity of ferredoxins across the living organisms. To test this hypothesis, comparative analysis of ferredoxins between bacterial groups, Alphaproteobacteria and Firmicutes and ferredoxins collected from species of different domains of life that are reported in the literature has been carried out. Ferredoxins were found to be highly diverse within their types. Large numbers of alphaproteobacterial species ferredoxin subtypes were found in Firmicutes species and the same ferredoxin subtypes across the species of Bacteria, Archaea, and Eukarya, suggesting shared common ancestral origin of ferredoxins between Archaea and Bacteria and lateral gene transfer of ferredoxins from prokaryotes (Archaea/Bacteria) to eukaryotes. This study opened new vistas for further analysis of diversity of ferredoxins in living organisms.  相似文献   
2.
Southern Africa boasts a wealth of endemic fauna and flora, comprising both massive recent radiations such as those characteristic of the Cape flora, and solitary ancient species such as the peculiar desert gymnosperm Welwitschia. This study was undertaken to identify ancient biological lineages (tetrapod and vascular plant lineages of Eocene age or older) endemic to southern Africa, and to map their distribution across the region. Twenty‐seven (17 plant and ten animal) lineages were identified, and distribution maps were generated for each of them across 74 operational geographic units, which were then combined into total endemism and corrected weighted endemism per unit area. Total endemism peaked along South Africa's coast and Great Escarpment, but in the case of weighted endemism high values were also recorded along other portions of the Great Escarpment further north. A review of the lineages sister to southern African ancient endemic lineages showed that these are often globally widespread, and many of them differ substantially from the southern African ancient lineages in terms of morphology and ecology. The mechanisms of ancient lineage survival in the region are discussed, and their importance for conservation in southern Africa is emphasised.  相似文献   
3.

Background

The deposition of aggregated β-amyloid peptide senile plaques and the accumulation of arginine within the astrocytes in the brain of an Alzheimer's patient are classic observations in the neuropathology of the disease. It would be logical, in the aetiology and pathogenesis, to investigate arginine-metabolising enzymes and their intimate association with amyloid peptides.

Methods

Neuronal nitric oxide synthase (nNOS) was isolated, purified and shown, through fluorescence quenching spectroscopy and fluorescence resonance energy transfer (FRET), to interact with structural fragments of Aβ1–40 and be catalytic towards amyloid fibril formation.

Results

Only one binding site on the enzyme was available for binding. Two amyloid peptide fragments of Aβ1–40 (Aβ17–28 and Aβ25–35) had Stern–Volmer values (KSV) of 0.111 μM−1 and 0.135 μM−1 indicating tight binding affinity to nNOS and easier accessibility to fluor molecules during binding. The polarity of this active site precludes binding of the predominantly hydrophobic amyloid peptide fragments contained within Aβ17–28 and within two glycine zipper motifs [G-X-X-X-G-X-X-X-G] [Aβ29–37] and bind to the enzyme at a site remote to the active region.

Conclusions

The interaction and binding of Aβ17–28 and Aβ25–35 to nNOS causes the movement of two critical tryptophan residues of 0.77 nm and 0.57 nm respectively towards the surface of the enzyme.

General significance

The binding of Aβ-peptide fragments with nNOS has been studied by spectrofluorimetry. The information and data presented should contribute towards understanding the mechanism for deposition of aggregated Aβ-peptides and fibrillogenesis in senile plaques in an AD brain.  相似文献   
4.
An assay was developed measuring the disruption of rosettes between Plasmodium falciparuminfected (trophozoites) and uninfected erythrocytes by the antimalarial drugs quinine, artemisinin mefloquine, primaquine, pyrimethamine, chloroquine and proguanil. At 4 hr incubation rosettes were disrupted by all the drugs in a dose dependent manner. Artemisinin and quinine were the most effective anti-malarials at disrupting rosettes at their therapeutic concentrations with South African RSA 14, 15, 17 and The Gambian FCR-3 P. falciparum strains. The least effective drugs were proguanil and chloroquine. A combination of artemisinin and mefloquine was more effective than each drug alone. The combinations of pyrimethamine or primaquine, with quinine disrupted more rosettes than quinine alone. Quinine may be an effective drug in the treatment of severe malaria because the drug efficiently reduces the number of rosettes.  相似文献   
5.
Neuronal nitric oxide synthase (nNOS) was purified on DEAE-Sepharose anion-exchange in a 38% yield, with 3-fold recovery and specific activity of 5 μmol.min(-1).mg(-1). The enzyme was a heterogeneous dimer of molecular mass 225?kDa having a temperature and pH optima of 40°C and 6.5, K(m) and V(max) of 2.6 μM and 996 nmol.min(-1).ml(-1), respectively and was relatively stable at the optimum conditions (t(?)?=?3?h). β-Amyloid peptide fragments Aβ(17-28) was the better inhibitor for nNOS (K(i)?=?0.81 μM). After extended incubation of nNOS (96?h) with each of the peptide fragments, Congo Red, turbidity and thioflavin-T assays detected the presence of soluble and insoluble fibrils that had formed at a rate of 5?nM.min(-1). A hydrophobic fragment Aβ(17-21) [Leu(17) - Val(18) - Phe(19) - Phe(20) - Ala(21)] and glycine zipper motifs within the peptide fragment Aβ(17-35) were critical in binding and in fibrillogenesis confirming that nNOS was amyloidogenic catalyst.  相似文献   
6.
7.
8.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.  相似文献   
9.
10.
The incubation of neuronal nitric oxide synthase with the five amyloid peptide fragments [Aβ17–21; Aβ25–29; Aβ29–33; Aβ33–37; Aβ25–37] catalyzed the formation of fibrils. The role of neuronal isomer (nNOS) involved the entrapment of free monomers and seed aggregates to initiate the events of nucleation and elongation, critical for the formation of fibrils. It was evident that the hydrophobic nature of Aβ17–21, the three glycine zipper peptides [Aβ25–29; Aβ29–33; Aβ33–37] and Aβ25–37 was a trigger in the formation of fibrils and was a force critical in the association of the peptides with the enzyme. Gold and silver nanoparticles (average 4.0 nm) inhibited fibril formation when added to the induced fibrils from nNOS-Aβ incubation. The addition of nNOS and/or Aβ to co-incubated solutions of nanoparticle-Aβ or nanoparticle-nNOS respectively did not prevent fibril formation but reversed it. Three mechanisms for this reversal were proposed: (1) depletion of free Aβ monomer in solution and blocking potential aggregation sites on the nNOS molecule due to large surface area of the nanoparticle (2) hydrophobic interaction between the Aβ peptide and nanoparticle (3) disruption of binary adducts between Aβ-peptides and nNOS by nanoparticles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号