全文获取类型
收费全文 | 51篇 |
免费 | 1篇 |
专业分类
52篇 |
出版年
2020年 | 1篇 |
2019年 | 1篇 |
2015年 | 1篇 |
2014年 | 2篇 |
2013年 | 1篇 |
2012年 | 5篇 |
2010年 | 2篇 |
2009年 | 1篇 |
2008年 | 3篇 |
2007年 | 1篇 |
2006年 | 1篇 |
2005年 | 2篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2002年 | 2篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1984年 | 1篇 |
1980年 | 1篇 |
1975年 | 1篇 |
1956年 | 1篇 |
1946年 | 1篇 |
排序方式: 共有52条查询结果,搜索用时 0 毫秒
1.
Frazer DM Vulpe CD McKie AT Wilkins SJ Trinder D Cleghorn GJ Anderson GJ 《American journal of physiology. Gastrointestinal and liver physiology》2001,281(4):G931-G939
The membrane-bound ceruloplasmin homolog hephaestin plays a critical role in intestinal iron absorption. The aims of this study were to clone the rat hephaestin gene and to examine its expression in the gastrointestinal tract in relation to other genes encoding iron transport proteins. The rat hephaestin gene was isolated from intestinal mRNA and was found to encode a protein 96% identical to mouse hephaestin. Analysis by ribonuclease protection assay and Western blotting showed that hephaestin was expressed at high levels throughout the small intestine and colon. Immunofluorescence localized the hephaestin protein to the mature villus enterocytes with little or no expression in the crypts. Variations in iron status had a small but nonsignificant effect on hephaestin expression in the duodenum. The high sequence conservation between rat and mouse hephaestin is consistent with this protein playing a central role in intestinal iron absorption, although its precise function remains to be determined. 相似文献
2.
Transferrin receptor 2: a new molecule in iron metabolism 总被引:1,自引:0,他引:1
Transferrin receptor 1 (TfR1) which mediates uptake of transferrin-bound iron, is essential for life in mammals. Recently, a close homologue of human transferrin receptor 1 was cloned and called transferrin receptor 2 (TfR2). A similar molecule has been identified in the mouse. Human transferrin receptor 2 is 45% identical with transferrin receptor 1 in the extracellular domain, but contains no iron responsive element in its mRNA and is apparently not regulated by intracellular iron concentration nor by interaction with HFE. Transferrin receptor 2, like transferrin receptor 1, binds transferrin in a pH-dependent manner (but with 25 times lower affinity) and delivers iron to cells. However, transferrin receptor 2 distribution differs from transferrin receptor 1, increasing in differentiating hepatocytes and decreasing in differentiating erythroblasts. Expression of both receptors is cell cycle dependent. Mutations in the human transferrin receptor 2 gene cause iron overload disease, suggesting it has a role in iron homeostasis. 相似文献
3.
4.
Bei Bei Coo Calcagni Soledad Milgrom Jeannette Trinder John 《Sleep and biological rhythms》2012,10(3):212-221
Sleep and Biological Rhythms - The current literature suggests that nighttime sleep is compromised during late pregnancy and early postpartum periods, but little is known about the 24-hour sleep... 相似文献
5.
DNA barcoding the native flowering plants and conifers of Wales 总被引:1,自引:0,他引:1
de Vere N Rich TC Ford CR Trinder SA Long C Moore CW Satterthwaite D Davies H Allainguillaume J Ronca S Tatarinova T Garbett H Walker K Wilkinson MJ 《PloS one》2012,7(6):e37945
We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification. 相似文献
6.
Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To overcome this, we made direct measurements of plant competition for soil nitrogen (N). Using isotope pool-dilution, we examined the interactive effects of soil resource limitation and climatic severity between two common grassland species. Pool-dilution estimates the uptake of total N over a defined time period, rather than simply the uptake of 15N label, as used in most other tracer experiments. Competitive uptake of N was determined by its available form (NO3
− or NH4
+). Soil N availability had a greater effect than the climatic conditions (location) under which plants grew. The results did not entirely support either of the main current theories relating the role of competition to environmental conditions. We found no evidence for Tilman''s theory that competition for soil nutrients is stronger at low, compared with high nutrient levels and partial support for Grime''s theory that competition for soil nutrients is greater under potentially more productive conditions. These results provide novel insights by demonstrating the dynamic nature of plant resource competition. 相似文献
7.
Ray Dybzinski Angelo Kelvakis John McCabe Samantha Panock Kanyarak Anuchitlertchon Leah Vasarhelyi M. Luke McCormack Gordon G. McNickle Hendrik Poorter Clare Trinder Caroline E. Farrior 《Global Change Biology》2019,25(3):885-899
Understanding the effects of global change in terrestrial communities requires an understanding of how limiting resources interact with plant traits to affect productivity. Here, we focus on nitrogen and ask whether plant community nitrogen uptake rate is determined (a) by nitrogen availability alone or (b) by the product of nitrogen availability and fine‐root mass. Surprisingly, this is not empirically resolved. We performed controlled microcosm experiments and reanalyzed published pot experiments and field data to determine the relationship between community‐level nitrogen uptake rate, nitrogen availability, and fine‐root mass for 46 unique combinations of species, nitrogen levels, and growing conditions. We found that plant community nitrogen uptake rate was unaffected by fine‐root mass in 63% of cases and saturated with fine‐root mass in 29% of cases (92% in total). In contrast, plant community nitrogen uptake rate was clearly affected by nitrogen availability. The results support the idea that although plants may over‐proliferate fine roots for individual‐level competition, it comes without an increase in community‐level nitrogen uptake. The results have implications for the mechanisms included in coupled carbon‐nitrogen terrestrial biosphere models (CN‐TBMs) and are consistent with CN‐TBMs that operate above the individual scale and omit fine‐root mass in equations of nitrogen uptake rate but inconsistent with the majority of CN‐TBMs, which operate above the individual scale and include fine‐root mass in equations of nitrogen uptake rate. For the much smaller number of CN‐TBMs that explicitly model individual‐based belowground competition for nitrogen, the results suggest that the relative (not absolute) fine‐root mass of competing individuals should be included in the equations that determine individual‐level nitrogen uptake rates. By providing empirical data to support the assumptions used in CN‐TBMs, we put their global climate change predictions on firmer ground. 相似文献
8.
T Moos D Trinder E H Morgan 《Cellular and molecular biology, including cyto-enzymology》2000,46(3):549-561
We examined whether high levels of circulatory iron may cause iron accumulation in the brain. In particular, we focussed on the substantia nigra and basal ganglia as several papers have indicated that iron may accumulate here and cause death of dopaminergic neurons. Normal mice and a mouse model of hereditary haemochromatosis, the beta2-microglobulin (beta2m) knock out [beta2m (-/-)] mouse, which has high levels of circulating iron due to increased iron absorption, were examined. The iron concentration in livers were: 170+/-15 microg/g (mean +/- SD) in controls and 1010+/-50 microg/g in beta2m (-/-) mice (p<0.001), whereas in the brain the respective values were 47 +/-1 microg/g and 53+/-2 microg/g (p<0.02). Hence, the difference between cerebral iron levels of normal and beta2m (-/-) mice was small. Histological examination of the brains revealed an unequivocal distribution of ferric iron, ferritin, transferrin and divalent metal transporter 1 (DMT1), which were indistinguishable when normal and beta2m (-/-) mice were compared. In the substantia nigra and basal ganglia, ferric iron and the iron-binding proteins were present in identical cell types, which mainly comprised oligodendrocytes and microglia. Neurons were lightly labelled with transferrin and DMT1. The virtual lack of an increase in cerebral iron in beta2m (-/-) mice clearly shows that the blood-brain barrier (BBB) is capable of restricting the transport of excess plasma iron into the brain. 相似文献
9.
Julian P. Saboisky Daniel W. Stashuk Andrew Hamilton-Wright John Trinder Sanjeev Nandedkar Atul Malhotra 《PloS one》2014,9(8)
The genioglossus is a major upper airway dilator muscle thought to be important in obstructive sleep apnea pathogenesis. Aging is a risk factor for obstructive sleep apnea although the mechanisms are unclear and the effects of aging on motor unit remodeled in the genioglossus remains unknown. To assess possible changes associated with aging we compared quantitative parameters related to motor unit potential morphology derived from EMG signals in a sample of older (n = 11; >55 years) versus younger (n = 29; <55 years) adults. All data were recorded during quiet breathing with the subjects awake. Diagnostic sleep studies (Apnea Hypopnea Index) confirmed the presence or absence of obstructive sleep apnea. Genioglossus EMG signals were analyzed offline by automated software (DQEMG), which estimated a MUP template from each extracted motor unit potential train (MUPT) for both the selective concentric needle and concentric needle macro (CNMACRO) recorded EMG signals. 2074 MUPTs from 40 subjects (mean±95% CI; older AHI 19.6±9.9 events/hr versus younger AHI 30.1±6.1 events/hr) were extracted. MUPs detected in older adults were 32% longer in duration (14.7±0.5 ms versus 11.1±0.2 ms; P = 0.05), with similar amplitudes (395.2±25.1 µV versus 394.6±13.7 µV). Amplitudes of CNMACRO MUPs detected in older adults were larger by 22% (62.7±6.5 µV versus 51.3±3.0 µV; P<0.05), with areas 24% larger (160.6±18.6 µV.ms versus 130.0±7.4 µV.ms; P<0.05) than those detected in younger adults. These results confirm that remodeled motor units are present in the genioglossus muscle of individuals above 55 years, which may have implications for OSA pathogenesis and aging related upper airway collapsibility. 相似文献
10.
The effects of an antibody to the rat transferrin receptor and of rat serum albumin on the uptake of diferric transferrin by rat hepatocytes 总被引:2,自引:0,他引:2
The role of high-affinity specific transferrin receptors and low-affinity, non-saturable processes in the uptake of transferrin and iron by hepatocytes was investigated using fetal and adult rat hepatocytes in primary monolayer culture, rat transferrin, rat serum albumin and a rabbit anti-rat transferrin receptor antibody. The intracellular uptake of transferrin and iron occurred by saturable and non-saturable mechanisms. Treatment of the cells with the antibody almost completely eliminated the saturable uptake of iron but had little effect on the non-saturable process. Addition of albumin to the incubation medium reduced the endocytosis of transferrin by the cells but had no significant effect on the intracellular accumulation of iron. The maximum effect of rat serum albumin was observed at concentrations of 3 mg/ml and above. At a low incubation concentration of transferrin (0.5 microM), the presence of both rat albumin and the antibody decreased the rate of iron uptake by the cells to about 15% of the value found in their absence, but to only 40% when the diferric transferrin concentration was 5 microM. These results confirm that the uptake of transferrin-bound iron by both fetal and adult rat hepatocytes in culture occurs by a specific, receptor-mediated process and a low-affinity, non-saturable process. The low-affinity process increases in relative importance as the iron-transferrin concentration is raised. 相似文献