首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   10篇
  311篇
  2024年   3篇
  2022年   1篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   7篇
  2015年   22篇
  2014年   19篇
  2013年   25篇
  2012年   24篇
  2011年   18篇
  2010年   15篇
  2009年   9篇
  2008年   15篇
  2007年   21篇
  2006年   15篇
  2005年   13篇
  2004年   12篇
  2003年   13篇
  2002年   12篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1955年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
1.
U8 snoRNP is required for accumulation of mature 5.8S and 28S rRNA in vertebrates. We are identifying proteins that bind U8 RNA with high specificity to understand how U8 functions in ribosome biogenesis. Here, we characterize a Xenopus 29 kDa protein (X29), which we previously showed binds U8 RNA with high affinity. X29 and putative homologs in other vertebrates contain a NUDIX domain found in MutT and other nucleotide diphosphatases. Recombinant X29 protein has diphosphatase activity that removes m(7)G and m(227)G caps from U8 and other RNAs in vitro; the putative 29 kDa human homolog also displays this decapping activity. X29 is primarily nucleolar in Xenopus tissue culture cells. We propose that X29 is a member of a conserved family of nuclear decapping proteins that function in regulating the level of U8 snoRNA and other nuclear RNAs with methylated caps.  相似文献   
2.
    
The use of short-read metabarcoding for classifying microeukaryotes is challenged by the lack of comprehensive 18S rRNA reference databases. While recent advances in high-throughput long-read sequencing provide the potential to greatly increase the phylogenetic coverage of these databases, the performance of different sequencing technologies and subsequent bioinformatics processing remain to be evaluated, primarily because of the absence of well-defined eukaryotic mock communities. To address this challenge, we created a eukaryotic rRNA operon clone-library and turned it into a precisely defined synthetic eukaryotic mock community. This mock community was then used to evaluate the performance of three long-read sequencing strategies (PacBio circular consensus sequencing and two Nanopore approaches using unique molecular identifiers) and three tools for resolving amplicons sequence variants (ASVs) (USEARCH, VSEARCH, and DADA2). We investigated the sensitivity of the sequencing techniques based on the number of detected mock taxa, and the accuracy of the different ASV-calling tools with a specific focus on the presence of chimera among the final rRNA operon ASVs. Based on our findings, we provide recommendations and best practice protocols for how to cost-effectively obtain essentially error-free rRNA operons in high-throughput. An agricultural soil sample was used to demonstrate that the sequencing and bioinformatic results from the mock community also translates to highly diverse natural samples, which enables us to identify previously undescribed microeukaryotic lineages.  相似文献   
3.
Dendrobaena octaedra is a freeze tolerant earthworm widely distributed in boreal regions. Specimens collected in Sweden were cold acclimated and then frozen at -7 degrees C to examine the influence of body mass on survival of freezing. Results showed that survival was negatively correlated to body mass. Glycogen content of the worms was variable and seemed to decrease with increasing body mass consistent with the hypothesis that freeze survival is dependent on the ability to rapidly break down glycogen and accumulate high concentrations of glucose. The results suggest that large worms (subadults and adults) invest energy in production of cocoons at the expense of glycogen storage for cryoprotectant production, whereas juvenile worms increase their survival chances by investing energy in glycogen storage at the expense of growth as a preparation for winter.  相似文献   
4.
CLIPs (cytoplasmic linker proteins) are a class of proteins believed to mediate the initial, static interaction of organelles with microtubules. CLIP-170, the CLIP best characterized to date, is required for in vitro binding of endocytic transport vesicles to microtubules. We report here that CLIP-170 transiently associates with prometaphase chromosome kinetochores and codistributes with dynein and dynactin at kinetochores, but not polar regions, during mitosis. Like dynein and dynactin, a fraction of the total CLIP-170 pool can be detected on kinetochores of unattached chromosomes but not on those that have become aligned at the metaphase plate. The COOH-terminal domain of CLIP-170, when transiently overexpressed, localizes to kinetochores and causes endogenous full-length CLIP-170 to be lost from the kinetochores, resulting in a delay in prometaphase. Overexpression of the dynactin subunit, dynamitin, strongly reduces the amount of CLIP-170 at kinetochores suggesting that CLIP-170 targeting may involve the dynein/dynactin complex. Thus, CLIP-170 may be a linker for cargo in mitosis as well as interphase. However, dynein and dynactin staining at kinetochores are unaffected by this treatment and further overexpression studies indicate that neither CLIP-170 nor dynein and dynactin are required for the formation of kinetochore fibers. Nevertheless, these results strongly suggest that CLIP-170 contributes in some way to kinetochore function in vivo.Microtubules (MTs)1 in vertebrate somatic cells are involved in intracellular transport and distribution of membranous organelles. Fundamental to this role are their tightly controlled, polarized organization, and unusual dynamic properties (Hirokawa, 1994) and their interaction with a complex set of MT-based motor proteins (Hirokawa, 1996; Sheetz, 1996; Goodson et al., 1997). During mitosis, they contribute to the motility of centrosomes, the construction of spindle poles (Karsenti et al., 1996; Merdes and Cleveland, 1997), and the dynamic movements of kinetochores (Rieder and Salmon, 1994) and chromosome arms (Barton and Goldstein, 1996; Vernos and Karsenti, 1996). The motor protein cytoplasmic dynein, drives the transport toward MT minus-ends of a variety of subcellular organelles (Schnapp and Reese, 1989; Schroer et al., 1989; Holzbaur and Vallee, 1994). Dynactin is a molecular complex originally identified as being essential for dynein-mediated movement of salt-washed vesicles in vitro (reviewed in Schroer, 1996; Schroer and Sheetz, 1991). Genetic studies in fungi, yeast, and flies have shown that the two complexes function together to drive nuclear migration, spindle and nuclear positioning and to permit proper neuronal development (Eshel et al., 1993; Clark and Meyer, 1994; Muhua et al., 1994; Plamann et al., 1994; McGrail et al., 1995; Karsenti et al., 1996). Biochemical studies suggest a direct interaction between certain subunits of dynein and dynactin (Karki and Holzbaur, 1995; Vaughan and Vallee, 1995). In vivo, the two molecules may bind one another transiently, since they have not been isolated as a stable complex.There is good evidence indicating that the dynein/dynactin complex, together with other motors (Eg5, and a minus-end oriented kinesin-related protein) and a structural protein (NuMa), drive the focusing of free microtubule ends into mitotic spindle poles (Merdes and Cleveland, 1997; Waters and Salmon, 1997). A trimolecular complex composed of NuMa and dynein/dynactin may be crucial in this process in both acentriolar (Merdes et al., 1996), and centriolar spindles (Gaglio et al., 1997). A number of findings also indicate that the combined actions of dynein and dynactin at the kinetochore contribute to chromosome alignment in vertebrate somatic cells. First, the initial interaction between polar spindle MTs and kinetochores seems to involve a tangential capture event (Merdes and De Mey, 1990; Rieder and Alexander, 1990) which is followed by a poleward gliding along the surface lattice of the MT (Hayden et al., 1990). Both in vivo and in vitro (Hyman and Mitchison, 1991) this gliding movement appears similar to the dynein-mediated retrograde transport of vesicular organelles along MTs. Consistent with this is the finding that both dynein (Pfarr et al., 1990; Steuer et al., 1990) and its activator, dynactin (Echeverri et al., 1996), are present at prometaphase kinetochores. Overexpression of dynamitin, a 50-kD subunit of the dynactin complex, results in the partial disruption of the dynactin complex and in the loss, from kinetochores, of dynein, as well as dynactin. Therefore, it has been proposed that dynactin mediates the association of dynein with kinetochores. Abnormal spindles with poorly focused poles are observed and the cells become arrested in pseudoprometaphase (Echeverri et al., 1996). Despite these findings, rigorous proof for a role of the dynein motor complex in kinetochore motility is still lacking, and its role may differ between lower and higher eucaryotes, and between mitosis and meiosis.CLIP-170 (Rickard and Kreis, 1996) is needed for in vitro binding of endocytic transport vesicles to MTs (Pierre et al., 1992). It is a nonmotor MT-binding protein that accumulates preferentially in the vicinity of MT plus ends and on early endosomes and endocytic transport vesicles in nondividing cells (Rickard and Kreis, 1990; Pierre et al., 1992). Like many MT-binding proteins, CLIP-170 is a homodimer whose NH2-terminal head domains and COOH-terminal tail domains flank a central α-helical coiled-coil domain. The binding of CLIP-170 to MTs involves a 57–amino acid sequence present twice in the head domain (Pierre et al., 1992) and is regulated by phosphorylation (Rickard and Kreis, 1991). The COOH-terminal domain has been proposed to participate in targeting to endocytic membranes (Pierre et al., 1994). The fact that the latter move predominantly toward microtubule minus ends in a process most likely mediated by cytoplasmic dynein and dynactin (Aniento and Gruenberg, 1995), suggests that CLIP-170 may act in concert with this motor complex, and may be subject to regulated interactions with one or more dynactin or dynein subunits at the vesicle membrane.Here we report that during mitosis, CLIP-170 codistributes with dynein and dynactin at kinetochores, but not spindle poles. Evidence is presented that the COOH-terminal domain of CLIP-170 is responsible for its kinetochore targeting, and that this may be mediated by the complex of dynein and dynactin. The effects on mitotic progression of overexpression of wild type and several deletion mutants of CLIP-170 provide evidence for the involvement of CLIP-170 in kinetochore function early in mitosis. We also present in vivo evidence that neither CLIP-170 nor the complex of dynein and dynactin are required for formation of kinetochore fibers.  相似文献   
5.
Resolving the phylogeny of treeshrews (Order Scandentia) has historically proven difficult, in large part because of access to specimens and samples from critical taxa. We used "antique" DNA methods with non-destructive sampling of museum specimens to complete taxon sampling for the 20 currently recognized treeshrew species and to estimate their phylogeny and divergence times. Most divergence among extant species is estimated to have taken place within the past 20 million years, with deeper divergences between the two families (Ptilocercidae and Tupaiidae) and between Dendrogale and all other genera within Tupaiidae. All but one of the divergences between currently recognized species had occurred by 4Mya, suggesting that Miocene tectonics, volcanism, and geographic instability drove treeshrew diversification. These geologic processes may be associated with an increase in net diversification rate in the early Miocene. Most evolutionary relationships appear consistent with island-hopping or landbridge colonization between contiguous geographic areas, although there are exceptions in which extinction may play an important part. The single recent divergence is between Tupaia palawanensis and Tupaia moellendorffi, both endemic to the Philippines, and may be due to Pleistocene sea level fluctuations and post-landbridge isolation in allopatry. We provide a time-calibrated phylogenetic framework for answering evolutionary questions about treeshrews and about evolutionary patterns and processes in Euarchonta. We also propose subsuming the monotypic genus Urogale, a Philippine endemic, into Tupaia, thereby reducing the number of extant treeshrew genera from five to four.  相似文献   
6.
    
Cancer stem cells (CSC) are resistant to radiation and chemotherapy and play a significant role in cancer recurrence and metastatic disease. It is therefore important to identify alternative strategies, such as immunotherapies that can be used to control this refractory population. A CD44(+)CD24(-/low) subpopulation of cells within the B6 PyMT-MMTV transgenic mouse-derived AT-3 mammary carcinoma cell line was identified, which had CSC-like characteristics, including pluripotency and a resistance to chemo- and radiotherapy. Therefore, unlike xenograph models that require immunocompromised settings, this novel system may provide a means to study immune-mediated responses against CSC-like cells. The immunobiology of the AT-3 CSC-like cell population was studied by their surface molecule expression profile and their sensitivity to specified cell death pathways. Comparable levels of Rae-1, CD155, CD54 and higher levels of Fas and DR5 were expressed on the AT-3 CSC-like cells compared to non-CSC-like tumor cells. Expression correlated with an in vitro sensitivity to cell death by NK cells or through the ligation of the death receptors (Fas or DR5), by their ligands or anti-Fas and anti-DR5 mAbs. Indeed, compared to the rest of the AT-3 tumor cells, the CD44(+)CD24(-/low) subpopulation of cells were more sensitive to both Fas- and TRAIL-mediated cell death pathways. Therefore, despite the refractory nature of CSC to other conventional therapies, these CSC-like cells were not inherently resistant to specified forms of immune-mediated cell death. These results encourage the continued investigation into immunotherapeutic strategies as a means of controlling breast CSC, particularly through their cell death pathways.  相似文献   
7.
Knowledge of factors that influence oviposition behavior of malaria mosquitoes is critical to vector control measures aimed at larval habitat modifications and source reduction. Anopheles minimus s.l., an important malaria vector in Southeast Asia, generally breeds in clear, unpolluted water along shaded grassy edges of slow-moving streams. The objective of this study was to determine the influence of vegetation and plant structure on An. minimus s.l. ovipositing females. Twenty gravid female mosquitoes per replication were given a choice to lay eggs in bowls surrounded by different combinations of bare soil, grasses, small-leaved plants, and large-leaved plants. An. minimus s.l. females generally preferred to lay eggs in bowls with vegetation. A significantly higher number of eggs were found in bowls with small-leaved plants compared to bowls with grasses (P<0.05). The results suggest that gravid females preferred oviposition habitats in the following order: small-leaved plants > large-leaved plants > grasses > soil. Further studies are needed to determine the possible roles of plant structure and factors such as semiochemicals in the different species of the An. minimus species complex. Knowledge of female oviposition behavior is essential for the development of locally adapted vector control approaches.  相似文献   
8.
    
  相似文献   
9.
    
Species distribution modeling has been widely used to address questions related to ecology, biogeography and species conservation on global and regional scales. Here, we study palms (Arecaceae) in a tropical biodiversity hotspot (Thailand) using species distribution modeling to assess range‐limiting factors and estimate distribution and diversity patterns based on a comprehensive compilation of occurrence records. We focused on palms as a model group due to their key‐stone importance for ecosystem functioning and socio‐economics. Different combinations of climatic, non‐climatic environmental and spatial predictors were used. The most accurate models as indicated by the ‘area under the receiver operating characteristic curve’ (AUC) statistic were those that combined all predictors. The four strongest single predictors of palm species distributions were, in decreasing order of importance, 1) latitude, 2) precipitation of driest quarter, 3) annual precipitation, and 4) minimum temperature of the coldest month, suggesting rainfall patterns and latitudinal spatial constraints as the main range determinants. Overlaying the predicted distributions revealed that potential palm hotspots are situated in the provinces of Satun and Yala in southern Thailand where vast areas remain relatively open to the discovery of new palm records and perhaps even new species.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号