首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   2篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   8篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   9篇
  2003年   2篇
  2002年   8篇
  2001年   1篇
  1998年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1986年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1974年   1篇
  1973年   3篇
  1966年   2篇
  1965年   2篇
排序方式: 共有95条查询结果,搜索用时 140 毫秒
1.
2.
Polarographic protein waves were studied by using model samples. Two samples were prepared by thiolation of natural and synthetic polymers which show no catalytic wave in the ammoniacal cobalt buffer. The one was made from bacterial α-amylase by thiolation with N-acetylhomocysteine and the other was made from polyvinylalcohol by esterification with thioglycolic acid. These thiolated polymers showed typical double waves similar to protein waves both in cobaltous and cobaltic media though minute differences were present between the waves of thiolated polyvinylalcohol and those of proteins.  相似文献   
3.
A new diterpene glucoside has been isolated from Leucothoe grayana. Its structure was elucidated by X-ray diffraction analysis of a dehydrated product of the aglycone and conversion of the same to leucothol A.  相似文献   
4.
Pepsin-hydrolyzed collagen (atelocollagen) is a trimer, consisting of alpha 1 and alpha 2 monomers, and shows molecular species corresponding to a monomer, dimer (beta chain), and trimer (gamma chain) by SDS-polyacrylamide gel electrophoresis. Atelocollagen was purified from yellowfin tuna (Thunnus albacares) by salt precipitation and cation-exchange chromatography. Enzymatic hydrolysis of the atelocollagen by actinidain, a cysteine protease purified from kiwifruit, was analyzed by SDS-polyacrylamide gel electrophoresis. The triple helical structure unique to collagen was retained in the atelocollagen as judged by circular dichroism spectra. The actinidain-processed atelocollagen showed only monomeric alpha 1 and alpha 2 chains, with no beta and gamma chains, by SDS-polyacrylamide gel electrophoresis; nevertheless, it retained the typical triple helical structure. It is suggested that actinidain cleaved the atelocollagen molecule at specific sites on the inside of the inter-strand cross-linking peptides.  相似文献   
5.
The accumulation of alpha1,2fucosylated antigens, such as Y (Fucalpha1,2Galbeta1,4 [Fucalpha1,3]GlcNAcbeta), Le(b) (Fucalpha1,2Galbeta1,3-[Fucalpha1,4]GlcNAcbeta), and H type 2 (Fucalpha1,2 Galbeta1,4GlcNAcbeta) occurs specifically within human colorectal tumor tissues and can be detected by an antifucosylated antigen antibody, such as the YB-2 antibody. In the present investigation, we found that the expression of these antigens bearing an alpha1,2-linked fucose correlated with the resistance of the tumor cells to anticancer treatments. Addition of an exogenous sugar acceptor for alpha1,2fucosyltransferase to the cell medium resulted in suppression of alpha1,2fucosylated antigen expression on the tumor cells and increased susceptibility to anticancer treatment. The increased susceptibility may be attributed to cancer cell-mediated priming by sugar acceptors for alpha1,2fucosyltransferase added to the medium.  相似文献   
6.
Phosphoinositides have a pivotal role as precursors to important second messengers and as bona fide signaling and scaffold targeting molecules. Phosphatidylinositol 4-kinases (PtdIns 4-kinases or PI4Ks) are at the apex of the phosphoinsitide cascade. Sequence analysis revealed that mammalian cells contain two type II PtdIns 4-kinase isoforms, now termed PI4KIIalpha and PI4KIIbeta. PI4KIIalpha was cloned first. It is tightly membrane-associated and behaves as an integral membrane protein. In this study, we cloned PI4KIIbeta and compared the two isoforms by monitoring the distribution of endogenous and overexpressed proteins, their modes of association with membranes, their response to growth factor stimulation or Rac-GTP activation, and their kinetic properties. We find that the two kinases have different properties. PI4KIIbeta is primarily cytosolic, and it associates peripherally with plasma membranes, endoplasmic reticulum, and the Golgi. In contrast, PI4KIIalpha is primarily Golgi-associated. Platelet-derived growth factor promotes PI4KIIbeta recruitment to membrane ruffles. This effect is potentially mediated through Rac; overexpression of the constitutively active RacV12 induces membrane ruffling, increases PI4KIIbeta translocation to the plasma membrane, and stimulates its activity. The dominant-negative RacN17 blocks plasma membrane association and inhibits activity. RacV12 does not boost the catalytic activity of PI4KIIalpha further, probably because it is constitutively membrane-bound and already activated. Membrane recruitment is an important mechanism for PI4KIIbeta activation, because microsome-bound PI4KIIbeta is 16 times more active than cytosolic PI4KIIbeta. Membrane-associated PI4KIIbeta is as active as membrane-associated PI4KIIalpha and has essentially identical kinetic properties. We conclude that PI4KIIalpha and PI4KIIbeta may have partially overlapping, but not identical, functions. PI4KIIbeta is activated strongly by membrane association to stimulate phosphatidylinositol 4,5-bisphosphate synthesis at the plasma membrane. These findings provide new insight into how phosphoinositide cascades are propagated in cells.  相似文献   
7.
At the Kyushu-Okinawa Group of Eight summit in 2000, Japan announced the Okinawa Infectious Diseases Initiative (IDI) and pledged to spend US$3 billion over a five year period to combat infectious and parasitic diseases in developing countries. The IDI has exceeded expectations, spending more than US$4 billion over four years. The IDI is a unique initiative with its own philosophical basis and specifically tailored interventions and measures that helped to initiate worldwide political and financial commitments in the fight against infectious diseases. Notably, it promoted partnerships among stakeholders and emphasized comprehensive and inter-sectoral approaches (i.e. coordination and collaboration between health and other sectors). It helped to create a new vision of what is possible in the global effort against communicable diseases and has been instrumental in shaping the changing environments of development assistance, poverty reduction and other trends to reduce the impact of infectious and parasitic diseases.  相似文献   
8.
Ishii T  Sakurai T  Usami H  Uchida K 《Biochemistry》2005,44(42):13893-13901
Reactive oxygen species (ROS) have the potential to damage cellular components, such as protein, resulting in loss of function and structural alteration of proteins. The oxidative process affects a variety of side amino acid groups, some of which are converted to carbonyl compounds. We have previously shown that a prostaglandin D2 metabolite, 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), is the potent inducer of intracellular oxidative stress on human neuroblastoma SH-SY5Y cells [Kondo, M., Oya-Ito, T., Kumagai, T., Osawa, T., and Uchida, K. (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress, J. Biol. Chem. 276, 12076-12083]. In the present study, to elucidate the molecular mechanism underlying the oxidative stress-mediated cell degeneration, we analyzed the protein carbonylation on SH-SY5Y cells when these cells were submitted to an endogenous inducer of ROS production. Upon exposure of SH-SY5Y cells to this endogenous electrophile, we observed significant accumulation of protein carbonyls within the cells. Proteomic analysis of oxidation-sensitive proteins showed that the major intracellular target of protein carbonylation was one of the regulatory subunits in 26 S proteasome, S6 ATPase. Accompanied by a dramatic increase in protein carbonyls within S6 ATPase, the electrophile-induced oxidative stress exerted a significant decrease in the S6 ATPase activities and a decreased ability of the 26 S proteasome to degrade substrates. Moreover, in vitro oxidation of 26 S proteasome with a metal-catalyzed oxidation system also confirmed that S6 ATPase represents the most oxidation-sensitive subunit in the proteasome. These and the observation that down-regulation of S6 ATPase by RNA interference resulted in the enhanced accumulation of ubiquitinated proteins suggest that S6 ATPase is a molecular target of ROS under conditions of electrophile-induced oxidative stress and that oxidative modification of this regulatory subunit of proteasome may be functionally associated with the altered recognition and degradation of proteasomal substrates in the cells.  相似文献   
9.
Effects of treatment with trientine, a specific copper-chelating agent, on accumulation of copper and induction of DNA strand breaks were investigated in Long-Evans Cinnamon (LEC) rats, an animal model for human Wilson's disease. Copper accumulated in the livers of LEC rats in an age-dependent manner from 4 to 13 weeks of age. When LEC rats were treated with trientine from 10 weeks of age, hepatic copper contents did not increase and were maintained at the same levels as those in 10-week-old LEC rats. When the amounts of DNA single-strand breaks (SSBs) were estimated by a comet assay, SSBs of DNA were induced in a substantial population of LEC rat hepatic cells around 8 weeks of age and the amounts of SSBs increased in an age-dependent manner from 8 to 15 weeks of age. When LEC rats were treated with trientine from 10 weeks of age, the observed number of cells with DNA damage decreased dramatically, suggesting that induction of SSBs of DNA was inhibited and/or SSBs were repaired during the period of treatment with trientine. The results show that treatment of LEC rats with trientine decreases the number of DNA strand breaks observed, although copper contents remain high in the liver.  相似文献   
10.
Activation of the phosphoinositide 3-kinase pathway is commonly observed in human prostate cancer. Loss of function of phosphatase and tensin homolog (PTEN) is associated with the activation of AKT and mammalian target of rapamycin (mTOR) in many cancer cell lines as well as in other model systems. However, activation of mTOR is also dependent of kinases other than AKT. Here, we show that activation of mTOR is not dependent on AKT in a prostate-specific PTEN-deficient mouse model of prostate cancer. Pathway bifurcation of AKT and mTOR was noted in both mouse and human prostate tumors. We demonstrated for the first time that cotargeting mTOR and AKT with ridaforolimus/MK-8669 and M1K-2206, respectively, delivers additive antitumor effects in vivo when compared to single agents. Our preclinical data suggest that the combination of AKT and mTOR inhibitors might be more effective in treating prostate cancer patients than current treatment regimens or either treatment alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号