首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
  39篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2002年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
The lepidopteran mitochondrial control region: structure and evolution   总被引:8,自引:3,他引:5  
For several species of lepidoptera, most of the approximately 350-bp mitochondrial control-region sequences were determined. Six of these species are in one genus, Jalmenus; are closely related; and are believed to have undergone recent rapid speciation. Recent speciation was supported by the observation of low interspecific sequence divergence. Thus, no useful phylogeny could be constructed for the genus. Despite a surprising conservation of control-region length, there was little conservation of primary sequences either among the three lepidopteran genera or between lepidoptera and Drosophila. Analysis of secondary structure indicated only one possible feature in common--inferred stem loops with higher-than-random folding energies-- although the positions of the structures in different species were unrelated to regions of primary sequence similarity. We suggest that the conserved, short length of control regions is related to the observed lack of heteroplasmy in lepidopteran mitochondrial genomes. In addition, determination of flanking sequences for one Jalmenus species indicated (i) only weak support for the available model of insect 12S rRNA structure and (ii) that tRNA translocation is a frequent event in the evolution of insect mitochondrial genomes.   相似文献   
2.

Objective

To investigate the relationship of our interdisciplinary screening process on post-operative unintended hospitalizations and quality of life.

Background

There are currently no standardized criteria for selection of appropriate Deep Brain Stimulation candidates and little hard data exists to support the use of any singular method.

Methods

An Essential Tremor cohort was selected from our institutional Deep Brain Stimulation database. The interdisciplinary model utilized seven specialties who pre-operatively screened all potential Deep Brain Stimulation candidates. Concerns for surgery raised by each specialty were documented and classified as none, minor, or major. Charts were reviewed to identify unintended hospitalizations and quality of life measurements at 1 year post-surgery.

Results

Eighty-six percent (44/51) of the potential screened candidates were approved for Deep Brain Stimulation. Eight (18%) patients had an unintended hospitalization during the follow-up period. Patients with minor or major concerns raised by any specialty service had significantly more unintended hospitalizations when compared to patients without concerns (75% vs. 25%, p < 0.005). The rate of hospitalization revealed a direct relationship to the “level of concern”; ranging from 100% if major concerns, 42% if minor concerns, and 7% if no concerns raised, p = 0.001. Quality of life scores significantly worsened in patients with unintended hospitalizations at 6 (p = 0.046) and 12 months (p = 0.027) when compared to baseline scores. No significant differences in tremor scores between unintended and non-unintended hospitalizations were observed.

Conclusions

The number and level of concerns raised during interdisciplinary Deep Brain Stimulation screenings were significantly related to unintended hospitalizations and to a reduced quality of life. The interdisciplinary evaluation may help to stratify risk for these complications. However, data should be interpreted with caution due to the limitations of our study. Further prospective comparative and larger studies are required to confirm our results.  相似文献   
3.
We have applied a new equilibration procedure for the atomic level simulation of a hydrated lipid bilayer to hydrated bilayers of dioleyl-phosphatidylcholine (DOPC) and palmitoyl-oleyl phosphatidylcholine (POPC). The procedure consists of alternating molecular dynamics trajectory calculations in a constant surface tension and temperature ensemble with configurational bias Monte Carlo moves to different regions of the configuration space of the bilayer in a constant volume and temperature ensemble. The procedure is applied to bilayers of 128 molecules of POPC with 4628 water molecules, and 128 molecules of DOPC with 4825 water molecules. Progress toward equilibration is almost three times as fast in central processing unit (CPU) time compared with a purely molecular dynamics (MD) simulation. Equilibration is complete, as judged by the lack of energy drift in 200-ps runs of continuous MD. After the equilibrium state was reached, as determined by agreement between the simulation volume per lipid molecule with experiment, continuous MD was run in an ensemble in which the lateral area was restrained to fluctuate about a mean value and a pressure of 1 atm applied normal to the bilayer surface. Three separate continuous MD runs, 200 ps in duration each, separated by 10,000 CBMC steps, were carried out for each system. Properties of the systems were calculated and averaged over the three separate runs. Results of the simulations are presented and compared with experimental data and with other recent simulations of POPC and DOPC. Analysis of the hydration environment in the headgroups supports a mechanism by which unsaturation contributes to reduced transition temperatures. In this view, the relatively horizontal orientation of the unsaturated bond increases the area per lipid, resulting in increased water penetration between the headgroups. As a result the headgroup-headgroup interactions are attenuated and shielded, and this contributes to the lowered transition temperature.  相似文献   
4.

Background  

The Dmbx1 gene is important for the development of the midbrain and hindbrain, and mouse gene targeting experiments reveal that this gene is required for mediating postnatal and adult feeding behaviours. A single Dmbx1 gene exists in terrestrial vertebrate genomes, while teleost genomes have at least two paralogs. We compared the loss of function of the zebrafish dmbx1a and dmbx1b genes in order to gain insight into the molecular mechanism by which dmbx1 regulates neurogenesis, and to begin to understand why these duplicate genes have been retained in the zebrafish genome.  相似文献   
5.

Background

The diversity of visual systems in fish has long been of interest for evolutionary biologists and neurophysiologists, and has recently begun to attract the attention of molecular evolutionary geneticists. Several recent studies on the copy number and genomic organization of visual pigment proteins, the opsins, have revealed an increased opsin diversity in fish relative to most vertebrates, brought about through recent instances of opsin duplication and divergence. However, for the subfamily of opsin genes that mediate vision at the long-wavelength end of the spectrum, the LWS opsins, it appears that most fishes possess only one or two loci, a value comparable to most other vertebrates. Here, we characterize the LWS opsins from cDNA of an individual guppy, Poecilia reticulata, a fish that is known exhibit variation in its long-wavelength sensitive visual system, mate preferences and colour patterns.

Results

We identified six LWS opsins expressed within a single individual. Phylogenetic analysis revealed that these opsins descend from duplication events both pre-dating and following the divergence of the guppy lineage from that of the bluefin killifish, Lucania goodei, the closest species for which comparable data exists. Numerous amino acid substitutions exist among these different LWS opsins, many at sites known to be important for visual pigment function, including spectral sensitivity and G-protein activation. Likelihood analyses using codon-based models of evolution reveal significant changes in selective constraint along two of the guppy LWS opsin lineages.

Conclusion

The guppy displays an unusually high number of LWS opsins compared to other fish, and to vertebrates in general. Observing both substitutions at functionally important sites and the persistence of lineages across species boundaries suggests that these opsins might have functionally different roles, especially with regard to G-protein activation. The reasons why are currently unknown, but may relate to aspects of the guppy's behavioural ecology, in which both male colour patterns and the female mate preferences for these colour patterns experience strong, highly variable selection pressures.
  相似文献   
6.
7.
8.
Reva B  Finkelstein A  Topiol S 《Proteins》2002,47(2):180-193
We present a new method for more accurate modeling of protein structure, called threading with chemostructural restrictions. This method addresses those cases in which a target sequence has only remote homologues of known structure for which sequence comparison methods cannot provide accurate alignments. Although remote homologues cannot provide an accurate model for the whole chain, they can be used in constructing practically useful models for the most conserved-and often the most interesting-part of the structure. For many proteins of interest, one can suggest certain chemostructural patterns for the native structure based on the available information on the structural superfamily of the protein, the type of activity, the sequence location of the functionally significant residues, and other factors. We use such patterns to restrict (1) a number of possible templates, and (2) a number of allowed chain conformations on a template. The latter restrictions are imposed in the form of additional template potentials (including terms acting as sequence anchors) that act on certain residues. This approach is tested on remote homologues of alpha/beta-hydrolases that have significant structural similarity in the positions of their catalytic triads. The study shows that, in spite of significant deviations between the model and the native structures, the surroundings of the catalytic triad (positions of C(alpha) atoms of 20-30 nearby residues) can be reproduced with accuracy of 2-3 A. We then apply the approach to predict the structure of dipeptidylpeptidase IV (DPP-IV). Using experimentally available data identifying the catalytic triad residues of DPP-IV (David et al., J Biol Chem 1993;268:17247-17252); we predict a model structure of the catalytic domain of DPP-IV based on the 3D fold of prolyl oligopeptidase (Fulop et al., Cell 1998;94:161-170) and use this structure for modeling the interaction of DPP-IV with inhibitor.  相似文献   
9.
The study of structure activity relationships (SAR) is based on the delineation of the causal relationships between the properties of molecules and the observed responses evoked by the interaction of these molecules with biological systems. The methods of theoretical and quantum chemistry describe accurately the molecular properties that are determined by molecular structure and provide a rigorous link between structure and activity. We study the molecular events in the pharmacological mechanism of drugs interacting with the receptor of 5-hydroxytryptamine (5-HT, serotonin) by defining the elements of recognition and by analyzing the changes induced in a molecular model for the receptor. These steps define the relationship between the properties of the drugs and their ability to be recognized and cause the activation of the receptors. Consequently, our quantum chemical studies of drug-receptor interactions explain the selectivity of receptors and the molecular determinants for agonism and antagonism on the 5-HT receptor.  相似文献   
10.
We examine sequence-to-structure specificity of beta-structural fragments of immunoglobulin domains. The structure specificity of separate chain fragments is estimated by computing the Z-score values in recognition of the native structure in gapless threading tests. To improve the accuracy of our calculations we use energy averaging over diverse homologs of immunoglobulin domains. We show that the interactions between residues of beta-structure are more determinant in recognition of the native structure than the interactions within the whole chain molecule. This result distinguishes immunoglobulins from more typical proteins where the interactions between residues of the whole chain normally recognize the native fold more accurately than interactions between the residues of the secondary structure residues alone [Reva,B. and Topiol,S. (2000) BIOCOMPUTING: Proceedings of the Pacific Symposium. World Scientific Publishing Co., pp. 168-178]. We also find that the predominant contributions of the secondary structure are produced by the four central beta-strands that form the core of the molecule. The results of this study allow us through quantitative means to understand the architecture of immunoglobulin molecules. Comparing the fold recognition data for different chain fragments one can say that beta-strands form a rigid frame for immunoglobulin molecules, whereas loops, with no structural role, can develop a broad variety of binding specificities. It is well known that protein function is determined by specific portions of a protein chain. This study suggests that the whole protein structure can be predominantly determined by a few fragments of chain which form the structural framework of the molecule. This idea may help in better understanding the mechanisms of protein evolution: strengthening a protein structure in the key framework-forming regions allows mutations and flexibility in other chain regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号