首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  6篇
  2016年   1篇
  2011年   1篇
  2006年   1篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Current advances in high-speed networks such as ATM and fiber-optics, and software technologies such as the JAVA programming language and WWW tools, have made network-based computing a cost-effective, high-performance distributed computing environment. Metacomputing, a special subset of network-based computing, is a well-integrated execution environment derived by combining diverse and distributed resources such as MPPs, workstations, mass storage, and databases that show a heterogeneous nature in terms of hardware, software, and organization. In this paper we present the Virtual Distributed Computing Environment (VDCE), a metacomputing environment currently being developed at Syracuse University. VDCE provides an efficient web-based approach for developing, evaluating, and visualizing large-scale distributed applications that are based on predefined task libraries on diverse platforms. The VDCE task libraries relieve end-users of tedious task implementations and also support reusability. The VDCE software architecture is described in terms of three modules: (a) the Application Editor, a user-friendly application development environment that generates the Application Flow Graph (AFG) of an application; (b) the Application Scheduler, which provides an efficient task-to-resource mapping of AFG; and (c) the VDCE Runtime System, which is responsible for running and managing application execution and for monitoring the VDCE resources. We present experimental results of an application execution on the VDCE prototype for evaluating the performance of different machine and network configurations. We also show how the VDCE can be used as a problem-solving environment on which large-scale, network-centric applications can be developed by a novice programmer rather than by an expert in low-level details of parallel programming languages. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
In this paper, we present a new task scheduling algorithm, called Contention-Aware Scheduling (CAS) algorithm, with the objective of delivering good quality of schedules in low running-time by considering contention on links of arbitrarily-connected, heterogeneous processors. The CAS algorithm schedules tasks on processors and messages on links by considering the earliest finish time attribute with the virtual cut-through (VCT) or the store-and-forward (SAF) switching. There are three types of CAS algorithm presented in this paper, which differ in ordering the messages from immediate predecessor tasks. As part of the experimental study, the performance of the CAS algorithm is compared with two well-known APN (arbitrary processor network) scheduling algorithms. Experiments on the results of the synthetic benchmarks and the task graphs of the well-known problems clearly show that our CAS algorithm outperforms the related work with respect to performance (given in normalized schedule length) and cost (given in running time) to generate output schedules. Ali Fuat Alkaya received the B.Sc. degree in mathematics from Koc University, Istanbul, Turkey in 1998, and the M.Sc. degree in computer engineering from Marmara University, Istanbul, Turkey in 2002. He is currently a Ph.D. student in engineering management department at the same university. His research interests include task scheduling and analysis of algorithms. Haluk Rahmi Topcuoglu received the B.Sc. and M.Sc. degrees in computer engineering from Bogazici University, Istanbul, Turkey, in 1991 and 1993, respectively. He received the Ph.D. degree in computer science from Syracuse University in 1999. He has been on the faculty at Marmara University, Istanbul, Turkey since Fall 1999, where he is currently an Associate Professor in computer engineering department. His main research interests are task scheduling and mapping in parallel and distributed systems; parallel processing; evolutionary algorithms and their applicability for stationary and dynamic environments. He is a member of the ACM, the IEEE, and the IEEE Computer Society. e-mail: haluk@eng.marmara.edu.tr e-mail: falkaya@eng.marmara.edu.tr  相似文献   
3.
4.
Cache structures in a multicore system are more vulnerable to soft errors due to high transistor density. Protecting all caches unselectively has notable overhead on performance and energy consumption. In this study, we propose asymmetrically reliable caches to supply reliability need of the system using sufficient additional hardware under the performance and energy constraints. In our framework, a chip multiprocessor is composed of a high reliability core which has ECC protection, and a set of low reliability cores which have no protection on their data caches. Between two types of cores, there is also a middle-level reliability core which has only parity check. Application threads are mapped on the different cores in terms of reliability based on their critical data usage. The experimental results for selected applications show that our proposed techniques improve reliability with considerable performance and energy overhead on the average compared to traditional unsafe caches.  相似文献   
5.
In this study, olive oil mill and alcohol factory wastewaters have been tested as growth media for the production of plant growth hormones. Funalia trogii ATCC 200800 and Trametes versicolor ATCC 200801 have been tested. Gibberellic acid (GA3), abscisic acid (ABA), indole acetic acid (IAA), and cytokinin were determined in the culture media of these fungi. Both organisms produced enhanced levels of all three hormones in the presence of either of the wastewaters.  相似文献   
6.
This paper presents two parallel formulations for the Barnes-Hut algorithm on the Cell architecture, which differ in tree distribution and construction phases of the algorithm. In the initial parallelization, the domains are dynamically partitioned and assigned to the synergistic processing elements (SPEs), and SPEs construct local trees of the sub-domains in parallel. The enhanced parallelization scheme provides better clustering of the particles by sequentially constructing the global tree of the entire work space in the power processing element (PPE) and by partitioning the tree into sub-trees that can fit in the Local Store. SPEs operate on the sub-tree data and construct local trees in parallel. Our experimental evaluation indicates that this application performs much faster on the Cell BE compared to the Intel Xeon based system. Specifically, our first and second methods on the Cell BE outperform Intel Xeon by a factor of 5.8 and 7.1 for 8192 particles, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号