全文获取类型
收费全文 | 166篇 |
免费 | 9篇 |
专业分类
175篇 |
出版年
2024年 | 1篇 |
2022年 | 2篇 |
2021年 | 2篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 3篇 |
2016年 | 4篇 |
2015年 | 8篇 |
2014年 | 7篇 |
2013年 | 9篇 |
2012年 | 12篇 |
2011年 | 11篇 |
2010年 | 8篇 |
2009年 | 2篇 |
2008年 | 5篇 |
2007年 | 12篇 |
2006年 | 12篇 |
2005年 | 8篇 |
2004年 | 11篇 |
2003年 | 15篇 |
2002年 | 7篇 |
2001年 | 1篇 |
2000年 | 4篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 5篇 |
1995年 | 2篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1984年 | 4篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1979年 | 1篇 |
1970年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有175条查询结果,搜索用时 15 毫秒
1.
In Saccharomyces cerevisiae, there are two isoenzymes of fumarate reductase (FRDS1 and FRDS2), encoded by the FRDS and OSM1 genes, respectively. Simultaneous disruption of these two genes results in a growth defect of the yeast under anaerobic conditions, while disruption of the OSM1 gene causes slow growth. However, the metabolic role of these isoenzymes has been unclear until now. In the present study, we found that the anaerobic growth of the strain disrupted for both the FRDS and OSM1 genes was fully restored by adding the oxidized form of methylene blue or phenazine methosulfate, which non-enzymatically oxidize cellular NADH to NAD(+). When methylene blue was added at growth-limiting concentrations, growth was completely arrested after exhaustion of oxidized methylene blue. In the double-disrupted strain, the accumulation of succinate in the supernatant was markedly decreased during anaerobic growth in the presence of methylene blue. These results suggest that fumarate reductase isoenzymes are required for the reoxidation of intracellular NADH under anaerobic conditions, but not aerobic conditions. 相似文献
2.
The compound eye of the Golden Birdwing, Troides aeacus formosanus (Papilionidae, Lepidoptera), is furnished with three types of ommatidia, which are clearly different in pigmentation around the rhabdom. Each ommatidium contains nine photoreceptors, whose spectral sensitivities were analyzed electrophysiologically. We identified nine spectral types of photoreceptor with sensitivities peaking at 360 nm (UV), 390 nm (V), 440 nm (B), 510 nm (BG), 540 nm (sG), 550 nm (dG), 580 nm (O), 610 nm (R), and 630 nm (dR) respectively. The spectral sensitivities of the V, O, R and dR receptors did not match the predicted spectra of any visual pigments, but with the filtering effects of the pigments around the rhabdom, they can be reasonably explained. In some of the receptors, negative-going responses were observed when they were stimulated at certain wavelengths, indicating antagonistic interactions between photoreceptors. 相似文献
3.
Background
We have previously demonstrated that the chronic intervention in the cholinergic system by donepezil, an acetylcholinesterase inhibitor, plays a beneficial role in suppressing long-term cardiac remodeling after myocardial infarction (MI). In comparison with such a chronic effect, however, the acute effect of donepezil during an acute phase of MI remains unclear. Noticing recent findings of a cholinergic mechanism for anti-inflammatory actions, we tested the hypothesis that donepezil attenuates an acute inflammatory tissue injury following MI.Methods and Results
In isolated and activated macrophages, donepezil significantly reduced intra- and extracellular matrix metalloproteinase-9 (MMP-9). In mice with MI, despite the comparable values of heart rate and blood pressure, the donepezil-treated group showed a significantly lower incidence of cardiac rupture than the untreated group during the acute phase of MI. Immunohistochemistry revealed that MMP-9 was localized at the infarct area where a large number of inflammatory cells including macrophages infiltrated, and the expression and the enzymatic activity of MMP-9 at the left ventricular infarct area was significantly reduced in the donepezil-treated group.Conclusion
The present study suggests that donepezil inhibits the MMP-9-related acute inflammatory tissue injury in the infarcted myocardium, thereby reduces the risk of left ventricular free wall rupture during the acute phase of MI. 相似文献4.
Yoshihiko Kakinuma Tsuyoshi Akiyama Kayo Okazaki Mikihiko Arikawa Tatsuya Noguchi Takayuki Sato 《PloS one》2012,7(11)
Background
In our previous study, we established the novel concept of a non-neuronal cardiac cholinergic system–cardiomyocytes produce ACh in an autocrine and/or paracrine manner. Subsequently, we determined the biological significance of this system–it played a critical role in modulating mitochondrial oxygen consumption. However, its detailed mechanisms and clinical implications have not been fully investigated.Aim
We investigated if this non-neuronal cardiac cholinergic system was upregulated by a modality other than drugs and if the activation of the system contributes to favorable outcomes.Results
Choline acetyltransferase knockout (ChAT KO) cells with the lowest cellular ACh levels consumed more oxygen and had increased MTT activity and lower cellular ATP levels compared with the control cells. Cardiac ChAT KO cells with diminished connexin 43 expression formed poor cell–cell communication, evidenced by the blunted dye transfer. Similarly, the ChAT inhibitor hemicholinium-3 decreased ATP levels and increased MTT activity in cardiomyocytes. In the presence of a hypoxia mimetic, ChAT KO viability was reduced. Norepinephrine dose-dependently caused cardiac ChAT KO cell death associated with increased ROS production. In in vivo studies, protein expression of ChAT and the choline transporter CHT1 in the hindlimb were enhanced after ischemia-reperfusion compared with the contralateral non-treated limb. This local effect also remotely influenced the heart to upregulate ChAT and CHT1 expression as well as ACh and ATP levels in the heart compared with the baseline levels, and more intact cardiomyocytes were spared by this remote effect as evidenced by reduced infarction size. In contrast, the upregulated parameters were abrogated by hemicholinium-3.Conclusion
The non-neuronal cholinergic system plays a protective role in both myocardial cells and the entire heart by conserving ATP levels and inhibiting oxygen consumption. Activation of this non-neuronal cardiac cholinergic system by a physiotherapeutic modality may underlie cardioprotection through the remote effect of hindlimb ischemia-reperfusion. 相似文献5.
6.
Arikawa K. 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2003,189(11):791-800
Journal of Comparative Physiology A - This review outlines our recent studies on the spectral organization of butterfly compound eyes, with emphasis on the Japanese yellow swallowtail butterfly,... 相似文献
7.
Tomotsugu?AriteEmail author Hiromu?Kameoka Junko?Kyozuka 《Journal of Plant Growth Regulation》2012,31(2):165-172
Strigolactones are recently identified plant hormones that inhibit shoot branching. Pleiotropic defects in strigolactone-deficient
or -insensitive mutants indicate that strigolactones control various aspects of plant growth and development. However, our
understanding of the hormonal function of strigolactones in plants is very limited. In this study we demonstrate that rice
dwarf mutants that are strigolactone-deficient or -insensitive exhibit a short crown root phenotype. Exogenous application of GR24,
a synthetic strigolactone analog, complemented the crown root defect in strigolactone-deficient mutants but not in strigolactone-insensitive
mutants. These observations imply that strigolactones positively regulate the length of crown roots. Histological observations
revealed that the meristematic zone is shorter in dwarf mutants than in wild type, suggesting that strigolactones may exert their effect on roots via the control of cell division.
We also show that crown roots of wild type, but not dwarf mutants, become longer under phosphate starvation. 相似文献
8.
Arikawa E Cheung C Sekirov I Battell ML Yuen VG McNeill JH 《Canadian journal of physiology and pharmacology》2006,84(8-9):823-833
Increased vasoconstrictor response to norepinephrine (NE) and endothelin (ET)-1 in arteries from diabetic animals is ameliorated by chronic endothelin receptor blockade with bosentan and was absent in endothelium-denuded arteries, suggesting the involvement of ET-1 and an endothelium-derived contracting factor such as thromboxane A2 (TxA2). To examine this possibility, we determined the effects of acute blockade of ET receptors or inhibition of TxA2 synthesis on the vascular function of superior mesenteric arteries (SMA) and renal arteries (RA) isolated from nondiabetic and 11-week streptozotocin (STZ) diabetic rats chronically treated with either bosentan or vehicle. Both in vitro incubation with bosentan and a selective ETA receptor blocker, BQ123, eradicated the increase in NE contractile responses in diabetic SMA. Additionally, in vitro incubation with the thromboxane synthase inhibitor, dazmegrel, abrogated the exaggerated NE and ET-1 contractile responses in diabetic SMA. Conversely, in RA, no significant acute effect of bosentan, BQ123, nor dazmegrel on vascular responses to NE was observed. Dazmegrel incubation attenuated the maximum contractile responses to ET-1 in diabetic RA; however, these responses in diabetic RA remained significantly greater than those of other groups. Diabetic RA but not SMA exhibited an enhanced contractile response to the TxA2 analogue U46619, which was corrected by chronic bosentan treatment. Immunohistochemical analyses in diabetic SMA revealed an increase in ETA receptor level that was normalized by chronic bosentan treatment. These data indicate that an interaction between ET-1 and TxA2 may be involved in mediating the exaggerated vasoconstrictor responses in diabetic arteries. Furthermore, the underlying mechanisms appear to be vessel specific. 相似文献
9.
10.
Popović ZB Mowrey KA Zhang Y Zhuang S Tabata T Wallick DW Grimm RA Thomas JD Mazgalev TN 《American journal of physiology. Heart and circulatory physiology》2002,283(6):H2706-H2713
Atrial fibrillation (AF) is characterized by short and irregular ventricular cycle lengths (VCL). While the beneficial effects of heart rate slowing (i.e., the prolongation of VCL) in AF are well recognized, little is known about the impact of irregularity. In 10 anesthetized dogs, R-R intervals, left ventricular (LV) pressure, and aortic flow were collected for >500 beats during fast AF and when the average VCL was prolonged to 75%, 100%, and 125% of the intrinsic sinus cycle length by selective atrioventricular (AV) nodal vagal stimulation. We used the ratio of the preceding and prepreceding R-R intervals (RR(p)/RR(pp)) as an index of cycle length irregularity and assessed its effects on the maximum LV power, the minimum of the first derivative of LV pressure, and the time constant of relaxation by using nonlinear fitting with monoexponential functions. During prolongation of VCL, there was a pronounced decrease in curvature with the formation of a plateau, indicating a lesser dependence on RR(p)/RR(pp). We conclude that prolongation of the VCL during AF reduces the sensitivity of the LV performance parameters to irregularity. 相似文献