首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1088篇
  免费   50篇
  国内免费   1篇
  2023年   1篇
  2022年   7篇
  2021年   14篇
  2020年   15篇
  2019年   15篇
  2018年   17篇
  2017年   20篇
  2016年   21篇
  2015年   50篇
  2014年   42篇
  2013年   72篇
  2012年   96篇
  2011年   98篇
  2010年   64篇
  2009年   52篇
  2008年   79篇
  2007年   76篇
  2006年   71篇
  2005年   67篇
  2004年   72篇
  2003年   75篇
  2002年   62篇
  2001年   6篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1997年   3篇
  1996年   8篇
  1995年   7篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1987年   1篇
  1970年   1篇
排序方式: 共有1139条查询结果,搜索用时 46 毫秒
1.
Abstract A novel mycoplasmal species designated as Mycoplasma penetrans has recently been isolated from patients infected with human immunodeficiency virus. The 16S rRNA gene from this mycoplasma was cloned and its nucleotide sequence determined. This sequence was aligned with previously published homologous sequences from several mycoplasmas and with related Gram-positive bacteria and a phylogenetic tree was constructed. The results indicate that M. penetrans belongs to the evolutionary group Pneumoniae.  相似文献   
2.
3.
The biosynthetic pathway for production of the antibiotic fosfomycin by Streptomyces wedmorensis consists of four steps including the formation of a C-P bond and an epoxide. Fosfomycin production genes were cloned from genomic DNA using S. wedmorensis mutants blocked at different steps of the biosynthetic pathway. Four genes corresponding to each of the biosynthetic steps were found to be clustered in a DNA fragment of about 5 kb. Nucleotide sequencing of a large fragment revealed the presence of ten open reading frames, including the four biosynthetic genes and six genes with unknown functions.  相似文献   
4.
The growth of the primary seminal root of maize (Zea mays L.) is characterized by an initial negative gravitropic reaction and a later positive one that attains a plagiotropic liminal angle. The effects of temperature and water potential of the surrounding soil on these gravitropic reactions were studied. Temperatures of 32, 25, and 18C and soil water potentials of −5,−38, and −67 kPa were imposed and the direction of growth was measured for every 1 cm length of the root. The initial negative gravitropic reaction extended to a distance of about 10cm from the graln. Higher temperatures reduced the initial negative gravitropic reaction. Lower soil water potential induced a downward growth at root emergence. A mathematical model, in which it was assumed that the rate of the directional change of root growth was a sum of a time-dependent negative gravitropic reaction and an establishment of the liminal angle, adequately fitted the distance-angle relations. It was suggested that higher temperatures and/or a lower water potential accelerated the diminution of the intitial negative gravitropic reaction.  相似文献   
5.
Protein kinase C (PKC), which plays a pivotal role in lymphocyte activation, represents a homologous family of at least nine proteins. Seven genes that encode PKC proteins have been identified. Since the regulatory properties and substrate specificities of the isoforms are not identical in vitro, it is possible that each isoform plays a unique role in cell activation. Toward an understanding of the role of PKC isoforms in lymphocyte activation we have studied the expression of mRNA encoding six of the isoforms (alpha, beta, gamma, delta, epsilon, and zeta) in T cell clones and B cell lines. PKC isoform phenotyping was done by MAPPing using isoform-specific primers and slot-blot analyses of mRNA were performed using specific probes. T cell clones and B cell lines were determined to express levels of the delta, epsilon, and zeta isoforms of PKC that were detectable by MAPPing. Plasmacytomas did not express PKC-beta message detectable by MAPPing. Slot blot analyses and Western blot analyses with peptide-specific antibody confirmed that B cell plasmacytomas did not express PKC-beta mRNA or protein. T cell clones and B cell lines were similar in that none expressed PKC-gamma. In cells that expressed PKC isoforms that were detectable by the MAPPing protocol, there was heterogeneity in the relative abundance of isoform mRNA (PKC-delta and -beta) and protein (PKC-beta and -epsilon). Such diversity of isoform expression could be responsible for the differential responsiveness of lymphocyte clones to activating stimuli.  相似文献   
6.
We have developed and characterized 21 microsatellite markers in the aphidophagous gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). All 21 loci tested were polymorphic: the number of alleles ranged from 2 to 17. Allelic richness and observed heterozygosities were higher in females than in males. Several loci had no heterozygosity in males, suggesting that the loci were located on sex chromosomes or E-chromosomes, common to cecidomyiids. The high polymorphism detected in this study suggests the markers will be of value in analyzing genetic structure of field populations.  相似文献   
7.
Dimethyl sulfide (DMS) is volatile compound important as one of the characteristic flavor compounds of marine food products. The precursor of DMS in marine products is dimethyl-β- propiothetin (DMPT), which is abundunt in green algae. DMPT was effectively extracted by the use of hydrophilic solvents from dried hitoegusa (Monostroma nitidum), a green alga. At around pH 4 and at over pH 9, the extracted DMPT was rapidly degraded to DMS; at around pH 7.5, this degradation was much slower. The DMS obtained volatilized immediately from aqueous solution. However, when the DMPT was formed into a powder with dextrin and heated to release the DMS, 40 — 60% of the DMS remained in the powder. The amount of DMS remaining was 80 % when cyclodextrin was used to form the powder.  相似文献   
8.
In Arabidopsis thaliana the ANGUSTIFOLIA (AN) gene regulates the width of leaves by controlling the diffuse growth of leaf cells in the medio‐lateral direction. In the genome of the moss Physcomitrella patens, we found two normal ANs (PpAN1‐1 and 1‐2). Both PpAN1 genes complemented the A. thaliana an‐1 mutant phenotypes. An analysis of spatiotemporal promoter activity of each PpAN1 gene, using transgenic lines that contained each PpAN1‐promoter– uidA (GUS) gene, showed that both promoters are mainly active in the stems of haploid gametophores and in the middle to basal region of the young sporophyte that develops into the seta and foot. Analyses of the knockout lines for PpAN1‐1 and PpAN1‐2 genes suggested that these genes have partially redundant functions and regulate gametophore height by controlling diffuse cell growth in gametophore stems. In addition, the seta and foot were shorter and thicker in diploid sporophytes, suggesting that cell elongation was reduced in the longitudinal direction, whereas no defects were detected in tip‐growing protonemata. These results indicate that both PpAN1 genes in P. patens function in diffuse growth of the haploid and diploid generations but not in tip growth. To visualize microtubule distribution in gametophore cells of P. patens, transformed lines expressing P. patens α‐tubulin fused to sGFP were generated. Contrary to expectations, the orientation of microtubules in the tips of gametophores in the PpAN1‐1/1‐2 double‐knockout lines was unchanged. The relationships among diffuse cell growth, cortical microtubules and AN proteins are discussed.  相似文献   
9.
Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs). The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM) pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR) pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI) whereas no significant reduction was found in smaller chromosomes (III and VI). On the other hand, the absence of Rad17 (a critical component of the ATR pathway) lead to an increase in DSB formation (chromosomes VII and II were tested). We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation.  相似文献   
10.
Narcolepsy patients often suffer from insomnia in addition to excessive daytime sleepiness. Narcoleptic animals also show behavioral instability characterized by frequent transitions between all vigilance states, exhibiting very short bouts of NREM sleep as well as wakefulness. The instability of wakefulness states in narcolepsy is thought to be due to deficiency of orexins, neuropeptides produced in the lateral hypothalamic neurons, which play a highly important role in maintaining wakefulness. However, the mechanism responsible for sleep instability in this disorder remains to be elucidated. Because firing of orexin neurons ceases during sleep in healthy animals, deficiency of orexins does not explain the abnormality of sleep. We hypothesized that chronic compensatory changes in the neurophysiologica activity of the locus coeruleus (LC) and dorsal raphe (DR) nucleus in response to the progressive loss of endogenous orexin tone underlie the pathological regulation of sleep/wake states. To evaluate this hypothesis, we examined firing patterns of serotonergic (5-HT) neurons and noradrenergic (NA) neurons in the brain stem, two important neuronal populations in the regulation of sleep/wakefulness states. We recorded single-unit activities of 5-HT neurons and NA neurons in the DR nucleus and LC of orexin neuron-ablated narcoleptic mice. We found that while the firing pattern of 5-HT neurons in narcoleptic mice was similar to that in wildtype mice, that of NA neurons was significantly different from that in wildtype mice. In narcoleptic mice, NA neurons showed a higher firing frequency during both wakefulness and NREM sleep as compared with wildtype mice. In vitro patch-clamp study of NA neurons of narcoleptic mice suggested a functional decrease of GABAergic input to these neurons. These alterations might play roles in the sleep abnormality in narcolepsy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号