首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2766篇
  免费   183篇
  2022年   16篇
  2021年   27篇
  2020年   22篇
  2019年   40篇
  2018年   36篇
  2017年   46篇
  2016年   57篇
  2015年   99篇
  2014年   99篇
  2013年   166篇
  2012年   208篇
  2011年   174篇
  2010年   132篇
  2009年   110篇
  2008年   191篇
  2007年   223篇
  2006年   193篇
  2005年   170篇
  2004年   187篇
  2003年   177篇
  2002年   178篇
  2001年   28篇
  2000年   20篇
  1999年   31篇
  1998年   29篇
  1997年   25篇
  1996年   25篇
  1995年   21篇
  1994年   25篇
  1993年   20篇
  1992年   12篇
  1991年   16篇
  1990年   9篇
  1989年   11篇
  1988年   4篇
  1987年   13篇
  1986年   11篇
  1985年   7篇
  1984年   18篇
  1983年   8篇
  1982年   6篇
  1981年   6篇
  1980年   5篇
  1976年   7篇
  1975年   4篇
  1974年   5篇
  1973年   6篇
  1972年   5篇
  1971年   4篇
  1969年   3篇
排序方式: 共有2949条查询结果,搜索用时 15 毫秒
1.
2.
We discovered a new cataract mutation, kfrs4, in the Kyoto Fancy Rat Stock (KFRS) background. Within 1 month of birth, all kfrs4/kfrs4 homozygotes developed cataracts, with severe opacity in the nuclei of the lens. In contrast, no opacity was observed in the kfrs4/+ heterozygotes. We continued to observe these rats until they reached 1 year of age and found that cataractogenesis did not occur in kfrs4/+ rats. To define the histological defects in the lenses of kfrs4 rats, sections of the eyes of these rats were prepared. Although the lenses of kfrs4/kfrs4 homozygotes showed severely disorganised fibres and vacuolation, the lenses of kfrs4/+ heterozygotes appeared normal and similar to those of wild-type rats. We used positional cloning to identify the kfrs4 mutation. The mutation was mapped to an approximately 9.7-Mb region on chromosome 7, which contains the Mip gene. This gene is responsible for a dominant form of cataract in humans and mice. Sequence analysis of the mutant-derived Mip gene identified a 5-bp insertion. This insertion is predicted to inactivate the MIP protein, as it produces a frameshift that results in the synthesis of 6 novel amino acid residues and a truncated protein that lacks 136 amino acids in the C-terminal region, and no MIP immunoreactivity was observed in the lens fibre cells of kfrs4/kfrs4 homozygous rats using an antibody that recognises the C- and N-terminus of MIP. In addition, the kfrs4/+ heterozygotes showed reduced expression of Mip mRNA and MIP protein and the kfrs4/kfrs4 homozygotes showed no expression in the lens. These results indicate that the kfrs4 mutation conveys a loss-of-function, which leads to functional inactivation though the degradation of Mip mRNA by an mRNA decay mechanism. Therefore, the kfrs4 rat represents the first characterised rat model with a recessive mutation in the Mip gene.  相似文献   
3.
4.
Substance P is known to modulate neuronal nicotinicacetylcholine receptors (nAChRs) in the sympathetic nervous system.There are two conflicting proposals for the mechanism of this effect, an indirect action mediated by protein kinase C (PKC) and a direct interaction with receptor subunits. We studied the mechanisms of thiseffect in PC-12 cells. Substance P enhanced the decay of thenicotine-induced whole cell current. This effect was fast in its onsetand was not antagonized by guanosine5'-O-(2-thiodiphosphate), a G protein blocker, orstaurosporine, a nonselective PKC blocker. Staurosporine failed toreverse the inhibition by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a synthetic diacylglycerol analog known to activate PKC. Theinhibitory effects of the peptide and OAG were preserved in excisedpatches, but substance P applied to the extra patch membrane wasineffective in the cell-attached patch configuration. We conclude thatsubstance P modulates neuronal nAChRs most likely by direct interactions with the receptors but independently from activation ofPKC or G proteins and that PKC does not participate in modulation by OAG.

  相似文献   
5.
Summary The identity of monoamine-emitted, formaldehyde-induced fluorescence in some pancreatic islet cells was studied in pancreatic tissue of male chickens by fluorescence and immunohistochemistry either on the same tissue section or on serial tissue sections. Pancreatic islet cells emitting intense formaldehyde-induced fluorescence also react immunohistochemically with antisera directed against glucagon, serotonin and aromatic L-amino acid decarboxylase. These results show that chicken pancreatic islet A cells contain glucagon, serotonin, and aromatic L-amino acid decarboxylase, an enzyme involved in the synthesis of serotonin. The islet B cells identified with anti-insulin immunoreactivity, which displayed a very weak formaldehyde-induced fluorescence, did not react with anti-serotonin serum.  相似文献   
6.
Tomoko Ohta 《Genetics》1986,113(1):145-159
A model of an expanding family of dispersed repetitive DNA was studied. Based on the previous result of the model of duplicative transposition, an approximate solution to give allelism and identify coefficients as functions of time was obtained, and theoretical predictions were verified by Monte Carlo experiments. The results show that, even if the copy number per genome increases very rapidly, allelism and identity coefficients may take a long time to reach equilibrium. The changes of allelism and allelic identity are similar to that of homozygosity at an ordinary single locus, whereas that of nonallelic identity can be much slower, particularly when the copy number per genome is large. Thus, many existing families of highly repetitive sequences may represent nonequilibrium states for nonallelic identity. The present model may be extended to include other evolutionary forces such as gene conversion or the recurrent insertion from normal gene copies.  相似文献   
7.
8.
Chinese hamster ovary (CHO) cell mutants that required exogenously added phosphatidylserine for cell growth were isolated by using the replica technique with polyester cloth, and three such mutants were characterized. Labeling experiments on intact cells with 32Pi and L-[U-14C]serine revealed that a phosphatidylserine auxotroph, designated as PSA-3, was strikingly defective in phosphatidylserine biosynthesis. When cells were grown for 2 days without phosphatidylserine, the phosphatidylserine content of PSA-3 was about one-third of that of the parent. In extracts of the mutant, the enzymatic activity of the base-exchange reaction of phospholipids with serine producing phosphatidylserine was reduced to 33% of that in the parent; in addition, the activities of base-exchange reactions of phospholipids with choline and ethanolamine in the mutant were also reduced to 1 and 45% of those in the parent, respectively. Furthermore, it was demonstrated that the serine-exchange activity in the parent was inhibited approximately 60% when choline was added to the reaction mixture whereas that in the mutant was not significantly affected. From the results presented here, we conclude the following. There are at least two kinds of serine-exchange enzymes in CHO cells; one (serine-exchange enzyme I) can catalyze the base-exchange reactions of phospholipids with serine, choline, and ethanolamine while the other (serine-exchange enzyme II) does not use the choline as a substrate. Serine-exchange enzyme I, in which mutant PSA-3 is defective, plays a major role in phosphatidylserine biosynthesis in CHO cells. Serine-exchange enzyme I is essential for the growth of CHO cells.  相似文献   
9.
The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and 32Pi, the incorporation of 32Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. 32Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of 32Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using [3H]serine-labeled phospholipid. Pulse and pulse-chase experiments with L-[U-14C] serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold whereas the turnover of newly synthesized phosphatidylserine was normal. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine. These results demonstrate that exogenous phosphatidylserine can be efficiently incorporated into Chinese hamster ovary cells and utilized for membrane biogenesis, endogenous phosphatidylserine biosynthesis thereby being suppressed.  相似文献   
10.
Summary The previous simple model for treating concerted evolution of multigene families has been revised to be compatible with various new observations on the immunoglobulin variable region family and other families. In the previous model, gene conversion and unequal crossing-over were considered, and it was assumed that genes are randomly arranged on the chromosome; neither subdivision nor correlation of gene identity and chromosomal distance were considered. Although this model satisfactorily explains the observed amino acid diversity within and between species, it fails to predict the very ancient branching of the mouse immunoglobulin heavy chain V-gene family. By incorporating subdivided structure and genetic correlation with chromosomal distance into the simple model, the data of divergence may be satisfactorily explained, as well as the rate of nucleotide substitution and the amino acid diversity. The rate at which a V-gene is duplicated or deleted by conversion or by unequal crossing-over is estimated by the new model to be on the order of 10–6 per year. The model may be applicable to other multigene families, such as those coding for silkmoth chorion or mammalian kallikrein.Contribution no. 1560 from the National Institute of Genetics, Mishima, 411 Japan  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号