首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
  50篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   4篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有50条查询结果,搜索用时 0 毫秒
1.
2.
3.
Interleukin-10 (IL-10) is an important immunoregulatory cytokine influencing many aspects of the adaptive and inflammatory immune response. Two dinucleotide repeats have been identified in the 5'-UTR of IL-10 and shown to be useful genetic markers in several diseases. A simple, two-colour fluorescence assay was developed for determination of microsatellite fragment length by an automatic sequencer. Using this method polymorphisms at the IL-10G and IL-10R loci of the 5' flanking region of the IL-10 gene can be identified simultaneously. A unified standard nomenclature was applied to the known IL-10G and IL-10R microsatellites. The multiplex PCR approach was used to compare the allele frequencies in two independent donor groups from Germany (Caucasian), comprising 112 and 106 cases, respectively, and one group from Gabon (African) including 91 donors. Significant differences in the allele distribution were found. Both Caucasian populations tested showed no significant differences in their allele and genotype distribution. Whereas in Africans, allele IL-10G25 is rare at 3% compared to 21% in Caucasian, alleles IL-10G22 and G23 are more prevalent in Africans than in Caucasians (22% versus 10% and 26% versus 7%, respectively). Within the IL-10R locus, the allele R13 was observed at 88% in the African group compared to 69% in Caucasians. These data may help immunogenetic studies in diseases, where IL-10 is thought to be deregulated.  相似文献   
4.
The expansion of a polymorphic CAG repeat in the HD gene encoding huntingtin has been identified as the major cause of Huntington’s disease (HD) and determines 42–73% of the variance in the age-at-onset of the disease. Polymorphisms in huntingtin interacting or associated genes are thought to modify the course of the disease. To identify genetic modifiers influencing the age at disease onset, we searched for polymorphic markers in the GRIK2, TBP, BDNF, HIP1 and ZDHHC17 genes and analysed seven of them by association studies in 980 independent European HD patients. Screening for unknown sequence variations we found besides several silent variations three polymorphisms in the ZDHHC17 gene. These and polymorphisms in the GRIK2, TBP and BDNF genes were analysed with respect to their association with the HD age-at-onset. Although some of the factors have been defined as genetic modifier factors in previous studies, none of the genes encoding GRIK2, TBP, BDNF and ZDHHC17 could be identified as a genetic modifier for HD.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
5.
Genetic heterogeneity is considered an important parameter for individual fitness and reproductive success. In 1999 and 2000, we studied the population genetics of great tit ( Parus major L., 1758) in southwestern Germany from two different forest types (deciduous and mixed-coniferous), which may significantly differ in prey diversity and/or food supply. Adults of 99 families were genotyped at four enzyme and eight microsatellite loci, in order to estimate individual heterozygosity. In the mixed-coniferous forest, a significant positive correlation between the genetic heterogeneity of females and early egg-laying date and clutch size was detected. Early egg-laying date and increased clutch size are conditions that positively affect the number of fledglings. This effect of individual heterozygosity was not observed in the deciduous woodland. Maternal genetic heterogeneity, however, did not correlate with fledgling condition, and individual heterozygosity of fathers had no impact on breeding success in either habitat. The positive effect of female genetic heterogeneity on brood size of great tits in mixed-coniferous forests is attributed to early egg-laying date, i.e. a maternal effect, rather than to a specific mating strategy that optimizes fitness through an increased brood size and the quality of offspring.  相似文献   
6.
In comparison with most animal behaviours, circadian rhythms have a well-characterized molecular genetic basis. Detailed studies of circadian clock genes in 'model' organisms provide a foundation for interpreting the functional and evolutionary significance of polymorphic circadian clock genes found within free-living animal populations. Here, we describe allelic variation in a region of the avian Clock orthologue which encodes a functionally significant polyglutamine repeat (ClkpolyQcds), within free-living populations of two passerine birds, the migratory bluethroat (Luscinia svecica) and the predominantly nonmigratory blue tit (Cyanistes caeruleus). Multiple ClkpolyQcds alleles were found within populations of both species (bluethroat: 12 populations, 7 alleles; blue tit: 14 populations, 9 alleles). Some populations of both species were differentiated at the ClkpolyQcds locus as measured by F(ST) and R(ST) values. Among the blue tit, but not bluethroat populations, we found evidence of latitudinal clines in (i) mean ClkpolyQcds repeat length, and (ii) the proportions of three ClkpolyQcds genotype groupings. Parallel analyses of microsatellite allele frequencies, which are considered to reflect selectively neutral processes, indicate that interpopulation allele frequency variation at the ClkpolyQcds and microsatellite loci does not reflect the same underlying demographic processes. The possibility that the observed interpopulation ClkpolyQcds allele frequency variation is, at least in part, maintained by selection for microevolutionary adaptation to photoperiodic parameters correlated with latitude warrants further study.  相似文献   
7.
We analyze a selection model analogous to a one-locus, two-allele haploid system that can explain recurrent seasonal changes in diversity for communities with diapausing species or populations with diapausing clones. The model demonstrates the potential influence of differential diapause on the stability of species and clonal coexistence and, by extension, on the maintenance of genetic polymorphism in general. Using estimates of clonal fitness values from populations of the parthenogenetic spear-winged fly Dipsa bifurcata (Fallén, 1810) (Diptera: Lonchopteridae), the model explains the long-term stable oscillation of clonal frequencies exhibited by these populations. In general, clones or species that share the same spatial habitat can persist in stable coexistence if there are differences not only in their temporarily fluctuating fitness values but also in their dormancy patterns.  相似文献   
8.
The deterministic maintenance of clonal diversity in thelytokous taxa can be seen as a model for understanding how environmental heterogeneity both can stabilize genetic diversity and can allow coexistence of competing species. We here analyze the temporal fluctuations in clonal diversity in the thelytokous Lonchopterid fly, Dipsa bifurcata (Fallén, 1810), at four localities in Sweden over an 8-year period. Estimated fitness values for clones are cyclical, synchronous among populations and correlated with seasonal changes in the environment. Differential winter viability and emergence from overwintering along with differential reproductive rate during the summer appear to be the selective mechanisms by which long-term clonal diversity is maintained. In a companion paper (Tomiuk et al, 2004), we present a model for the maintenance of clonal diversity through the mechanism of differential diapause among clones, utilizing fitness values estimated from the data presented here. In general, our results imply that fluctuating seasonal fitnesses can maintain stable genetic polymorphism within populations, as well as coexistence between closely related competitors, when coupled with differences in diapause phenology.  相似文献   
9.
Microsatellites are DNA-fragments containing short repetitive motifs with 2–10 bp. They are highly variable in most species and distributed throughout the whole genome. It is broadly accepted that their high degree of variability is closely associated with mispairing of DNA-strands during the replication phase, termed slippage, although recombination is also observed. The aim of this study is to demonstrate evidence that non-reciprocal recombination processes changing the total genomic structure are common in microsatellites and flanking regions. We sequenced DNA fragments from birds in which microsatellites are located, and analyzed the structure of the microsatellites and their flanking regions. Additionally, other data and those from literature of three microsatellite regions of primates coding for the Ataxin-2, the Huntingtin and the TATA-box binding protein were analyzed. The structures of seven avian and three primate microsatellites support the hypothesis that non-reciprocal recombination is a common process that may also contribute considerably to the variation at microsatellite loci. We conclude that results of population genetic studies that are analyzed statistically with methods based on stepwise mutation models should be interpreted with caution if no detailed information on the allelic variation of microsatellites is available.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号