首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2018年   1篇
  2014年   1篇
  2010年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 687 毫秒
1
1.
A modification of the α-helix, termed the ω-helix, has four residues in one turn of a helix. We searched the ω-helix in proteins by the HELFIT program which determines the helical parameters—pitch, residues per turn, radius, and handedness—and p = rmsd/(N ? 1)1/2 estimating helical regularity, where “rmsd” is the root mean square deviation from the best fit helix and “N” is helix length. A total of 1,496 regular α-helices 6–9 residues long with p ≤ 0.10 Å were identified from 866 protein chains. The statistical analysis provides a strong evidence that the frequency distribution of helices versus n indicates the bimodality of typical α-helix and ω-helix. Sixty-two right handed ω-helices identified (7.2% of proteins) show non-planarity of the peptide groups. There is amino acid preference of Asp and Cys. These observations and analyses insist that the ω-helices occur really in proteins.  相似文献   
2.
Kim HM  Park BS  Kim JI  Kim SE  Lee J  Oh SC  Enkhbayar P  Matsushima N  Lee H  Yoo OJ  Lee JO 《Cell》2007,130(5):906-917
TLR4 and MD-2 form a heterodimer that recognizes LPS (lipopolysaccharide) from Gram-negative bacteria. Eritoran is an analog of LPS that antagonizes its activity by binding to the TLR4-MD-2 complex. We determined the structure of the full-length ectodomain of the mouse TLR4 and MD-2 complex. We also produced a series of hybrids of human TLR4 and hagfish VLR and determined their structures with and without bound MD-2 and Eritoran. TLR4 is an atypical member of the LRR family and is composed of N-terminal, central, and C-terminal domains. The beta sheet of the central domain shows unusually small radii and large twist angles. MD-2 binds to the concave surface of the N-terminal and central domains. The interaction with Eritoran is mediated by a hydrophobic internal pocket in MD-2. Based on structural analysis and mutagenesis experiments on MD-2 and TLR4, we propose a model of TLR4-MD-2 dimerization induced by LPS.  相似文献   
3.
The Central Asian forest-steppe ecotone has been exposed to large alterations in grazing pressure in the last two decades, but the consequences for biodiversity have not been studied so far. We analyzed the biodiversity of the edges and the interior of Siberian larch forests in the forest-steppes of eastern Kazakhstan (Saur, Kazakh Altai) and western Mongolia (Mongolian Altai, Khangai) across different groups of organisms (vascular plants, epiphytic lichens, soil macroarthropods, oribatid mites, moths). The species richness of these groups was related to each other only at the forest edge, but not in the interior. Species richness of vascular plants, soil macroarthropods and oribatid mites at the forest edges was positively correlated. This indicates that these ground-inhabiting groups of organisms responded similarly to the variation in the grazing pressure of livestock, which is kept at spatially varying densities by mostly nomadic or transhumant herders. The species richness of epiphytic lichens was only positively correlated with that of vascular plants, and the richness of the (volant) moths was not correlated with that of any other group. The complete lack of correlation between the diversity of groups of organisms in the forest interior suggests that the diversity of the five studied groups is controlled by specific environmental factors, including light and moisture. Except for the Mongolian Altai, which was subjected to the highest grazing pressure, vascular plants, lichens, soil macroarthropods, and moths had a higher diversity at the edges than in the interior; the opposite was true for the oribatid mites. The latter probably benefit from the higher soil moisture inside the forest, whereas the other four groups are favored by increased availability of light, the proximity to the steppe with a partial mixing of species pools, and the soil macroarthropods also by increased dung abundance.  相似文献   
4.
The 3(10)-helix is characterized by having at least two consecutive hydrogen bonds between the main-chain carbonyl oxygen of residue i and the main-chain amide hydrogen of residue i + 3. The helical parameters--pitch, residues per turn, radius, and root mean square deviation (rmsd) from the best-fit helix--were determined by using the HELFIT program. All 3(10)-helices were classified as regular or irregular based on rmsd/(N - 1)1/2 where N is the helix length. For both there are systematic, position-specific shifts in the backbone dihedral angles. The average phi, psi shift systematically from approximately -58 degrees, approximately -32 degrees to approximately -90 degrees, approximately -4 degrees for helices 5, 6, and 7 residues long. The same general pattern is seen for helices, N = 8 and 9; however, in N = 9, the trend is repeated with residues 6, 7, and 8 approximately repeating the phi, psi of residues 2, 3, and 4. The residues per turn and radius of regular 3(10)-helices decrease with increasing length of helix, while the helix pitch and rise per residue increase. That is, regular 3(10)-helices become thinner and longer as N increases from 5 to 8. The fraction of regular 3(10)-helices decreases linearly with helix length. All longer helices, N > or = 9 are irregular. Energy minimizations show that regular helices become less stable with increasing helix length. These findings indicate that the definition of 3(10)-helices in terms of average, uniform dihedral angles is not appropriate and that it is inherently unstable for a polypeptide to form an extended, regular 3(10)-helix. The 3(10)-helices observed in proteins are better referred to parahelices.  相似文献   
5.
LRR-containing proteins are present in over 2000 proteins from viruses to eukaryotes. Most LRRs are 20-30 amino acids long, and the repeat number ranges from 2 to 42. The known structures of 14 LRR proteins, each containing 4-17 repeats, have revealed that the LRR domains fold into a horseshoe (or arc) shape with a parallel beta-sheet on the concave face and with various secondary structures, including alpha-helix, 3(10)-helix, and pII helix on the convex face. We developed simple methods to charactere quantitatively the arc shape of LRR and then applied them to all known LRR proteins. A quantity of 2Rsin(phi/2), in which R and phi are the radii of the LRR arc and the rotation angle about the central axis per repeating unit, respectively, is highly conserved in all the LRR proteins regardless of a large variety of repeat number and the radius of the LRR arc. The radii of the LRR arc with beta-alpha structural units are smaller than those with beta-3(10) or beta-pII units. The concave face of the LRR beta-sheet forms a surface analogous to a part of a M?bius strip.  相似文献   
6.
Leucine rich repeats (LRRs) are present in over 100,000 proteins from viruses to eukaryotes. The LRRs are 20–30 residues long and occur in tandem. LRRs form parallel stacks of short β-strands and then assume a super helical arrangement called a solenoid structure. Individual LRRs are separated into highly conserved segment (HCS) with the consensus of LxxLxLxxNxL and variable segment (VS). Eight classes have been recognized. Bacterial LRRs are short and characterized by two prolines in the VS; the consensus is xxLPxLPxx with Nine residues (N-subtype) and xxLPxxLPxx with Ten residues (T-subtype). Bacterial LRRs are contained in type III secretion system effectors such as YopM, IpaH3/9.8, SspH1/2, and SlrP from bacteria. Some LRRs in decorin, fribromodulin, TLR8/9, and FLRT2/3 from vertebrate also contain the motifs. In order to understand structural features of bacterial LRRs, we performed both secondary structures assignments using four programs—DSSP-PPII, PROSS, SEGNO, and XTLSSTR—and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness), based on the atomic coordinates of their crystal structures. The N-subtype VS adopts a left handed polyproline II helix (PPII) with four, five or six residues and a type I β-turn at the C-terminal side. Thus, the N-subtype is characterized by a super secondary structure consisting of a PPII and a β-turn. In contrast, the T-subtype VS prefers two separate PPIIs with two or three and two residues. The HELFIT analysis indicates that the type I β-turn is a right handed helix. The HELFIT analysis determines three unit vectors of the helix axes of PPII (P), β-turn (B), and LRR domain (A). Three structural parameters using these three helix axes are suggested to characterize the super secondary structure and the LRR domain.  相似文献   
7.
A method is proposed to measure global bending in DNA and RNA structures. It relies on a properly defined averaging of base-fixed coordinate frames, computes mean frames of suitably chosen groups of bases and uses these mean frames to evaluate bending. The method is applied to DNA A-tracts, known to induce considerable bend to the double helix. We performed atomistic molecular dynamics simulations of sequences containing the A4T4 and T4A4 tracts, in a single copy and in two copies phased with the helical repeat. Various temperature and salt conditions were investigated. Our simulations indicate bending by roughly 10° per A4T4 tract into the minor groove, and an essentially straight structure containing T4A4, in agreement with electrophoretic mobility data. In contrast, we show that the published NMR structures of analogous sequences containing A4T4 and T4A4 tracts are significantly bent into the minor groove for both sequences, although bending is less pronounced for the T4A4 containing sequence. The bending magnitudes obtained by frame averaging are confirmed by the analysis of superhelices composed of repeated tract monomers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号