首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   2篇
  2013年   7篇
  2012年   7篇
  2011年   7篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   7篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1966年   1篇
排序方式: 共有117条查询结果,搜索用时 62 毫秒
1.
2.
The effects of aluminium chloride (AICI3) treatments (50 and 150 mg/l) on 3-year-old Scots pine (Pinus sylvestris L.) seedlings were studied in a sand culture during 2 growing periods in an open field experiment. Even by the end of the first growing period, a decline was observed in the concentrations of Ca, Mg and P within the needles, and of Ca and Mg in the roots. After the second growing period, increased N and K concentrations were observed in the needles of Al-treated seedlings. Both the needles and roots of Al-treated seedlings showed, after the second growing period, a decline in growth and increased concentrations of AI as the amount of AICI3 in the nutrient solution increased. Al-induced changes in needle structure were found to be symptomatic of a nutrient imbalance, particularly of Mg and P. Al-stress did not result in any observable changes in root anatomy or in the number of mycorrhizas. Scots pine proved to be rather resistant to Al-stress, indicating that direct Al-injuries are not likely in the field, though Al-stress may be a contributing factor in the formation of nutrient imbalances.  相似文献   
3.
Transport rates for taurine from plasma to liver, kidney, heart, spleen and femoral muscle were evaluated in adult and 7-day-old mice in vivo. The mice were injected with [35S]taurine and the specific radioactivity of taurine was determined in the above tissues at varying intervals from 10 min up to 48 hr after the injection. A multicompartment model was fitted to the data and the transport rates with their confidence limits were estimated using a digital computer. The tissue-plasma exchange rate was generally faster in adult mice than in 7-day-old mice. The transport rates between the plasma and the brain or muscle were low, while taurine penetrated into the liver and kidneys very rapidly. There was no distinct correlation between the calculated transport rates and the tissue taurine concentrations. The metabolic breakdown of taurine in the tissues was slow, since only negligible amounts of radioactivity were recovered in the metabolites of taurine, isethionic acid and inorganic sulphate. It seems unlikely that either the magnitudes of the transport rates between the plasma and the tissues or taurine breakdown rates in situ act as the primary factor determining the taurine levels in tissues.  相似文献   
4.
Borrelia burgdorferi spirochetes that cause Lyme borreliosis survive for a long time in human serum because they successfully evade the complement system, an important arm of innate immunity. The outer surface protein E (OspE) of B. burgdorferi is needed for this because it recruits complement regulator factor H (FH) onto the bacterial surface to evade complement-mediated cell lysis. To understand this process at the molecular level, we used a structural approach. First, we solved the solution structure of OspE by NMR, revealing a fold that has not been seen before in proteins involved in complement regulation. Next, we solved the x-ray structure of the complex between OspE and the FH C-terminal domains 19 and 20 (FH19-20) at 2.83 Å resolution. The structure shows that OspE binds FH19-20 in a way similar to, but not identical with, that used by endothelial cells to bind FH via glycosaminoglycans. The observed interaction of OspE with FH19-20 allows the full function of FH in down-regulation of complement activation on the bacteria. This reveals the molecular basis for how B. burgdorferi evades innate immunity and suggests how OspE could be used as a potential vaccine antigen.  相似文献   
5.
One group of mantellid frogs from Madagascar (subgenus Pandanusicola of Guibemantis) includes species that complete larval development in the water-filled leaf axils of rainforest plants. This group consists of six described species: G. albolineatus, G. bicalcaratus, G. flavobrunneus, G. liber, G. pulcher, and G. punctatus. We sequenced the 12S and 16S mitochondrial rRNA genes ( approximately 1.8 kb) from multiple specimens (35 total) of all six species to assess phylogenetic relationships within this group. All reconstructions strongly supported G. liber as part of the Pandanusicola clade, even though this species does not breed in plant leaf axils. This result confirms a striking reversal of reproductive specialization. However, all analyses also indicated that specimens assigned to G. liber include genetically distinct allopatric forms that do not form a monophyletic group. Most other taxa that were adequately sampled (G. bicalcaratus, G. flavobrunneus, and G. pulcher) likewise consist of several genetically distinct lineages that do not form monophyletic groups. These results suggest that many of the recognized species in this group are complexes of cryptic species.  相似文献   
6.
Substituted salicylaldehydes are potent antibacterial and antifungal agents and may have chemotherapeutic potential. In the clinical setting, the minimal inhibitory concentration (MIC) as well as the minimal bactericidal and fungicidal concentrations (MBC and MFC, respectively) are of fundamental interest. Therefore, we have now, using a panel of five microbial species (Bacillus cereus, Candida albicans, Escherichia coli, Saccharomyces cerevisiae, and Staphylococcus aureus), determined the MIC and MBC/MFC values of a total of 22 aromatic aldehydes, including 19 substituted salicylaldehydes and the unsubstituted parent compounds benzaldehyde and salicylaldehyde (2-hydroxybenzaldehyde). The results clearly indicate that both of the yeasts studied are remarkably sensitive to various salicylaldehydes and, especially, to halogenated ones. Some congeners clearly merit consideration as potential therapeutic agents for Candida infections. The MIC values of the most potent congeners are of roughly the same magnitude as that of amphotericin B, and the results of the MFC measurements indicate that the compounds are fungicidal. All of the bacteria studied are also sensitive to at least some of the compounds tested but, clearly, this class of antimicrobials has superior activity against yeasts. Structure-activity relationships are discussed for each microbial species and compared with each other. The comparison of the results of MIC and MBC/MFC measurements with those of agar diffusion tests revealed aspects that are of interest concerning the methodology of antimicrobial activity screening. Unexpectedly, it was found that some compounds that are completely devoid of activity in agar diffusion tests had potent activity in MIC tests, indicating that if only agar diffusion methodology is used in drug discovery, some highly active compounds may be missed.  相似文献   
7.
8.
BACKGROUND: Several staining protocols have been developed for flow cytometric analysis of bacterial viability. One promising method is dual staining with the LIVE/DEAD BacLight bacterial viability kit. In this procedure, cells are treated with two different DNA-binding dyes (SYTO9 and PI), and viability is estimated according to the proportion of bound stain. SYTO9 diffuses through the intact cell membrane and binds cellular DNA, while PI binds DNA of damaged cells only. This dual-staining method allows effective separation between viable and dead cells, which is far more difficult to achieve with single staining. Although SYTO9-PI dual staining is practical for various bacterial viability analyses, the method has a number of disadvantages. Specifically, the passage of SYTO9 through the cell membrane is a slow process, which is significantly accelerated when the integrity of the cell membrane is disrupted. As a result, SYTO9 binding to DNA is considerably enhanced. PI competes for binding sites with SYTO9 and may displace the bound dye. These properties diminish the reliability of the LIVE/DEAD viability kit. In this study, we investigate an alternative method for measuring bacterial viability using a combination of green fluorescent protein (GFP) and PI, with a view to improving data reliability. METHODS: Recombinant Escherichia coli cells with a plasmid containing the gene for jellyfish GFP were stained with PI, and green and red fluorescence were measured by FCM. For comparison, cells containing the plasmid from which gfp was removed were stained with SYTO9 and PI, and analyzed by FCM. Viability was estimated according to the proportion of green and red fluorescence. In addition, bioluminescence and plate counting (other methods to assess viability) were used as reference procedures. RESULTS: SYTO9-PI dual staining of bacterial cells revealed three different cell populations: living, compromised, and dead cells. These cell populations were more distinct when the GFP-PI combination was used instead of dual staining. No differences in sensitivity were observed between the two methods. However, substitution of SYTO9 with GFP accelerated the procedure. Bioluminescence and plate counting results were in agreement with flow cytometric viability data. CONCLUSIONS: In bacterial viability analyses, the GFP-PI combination provided better distinction between current viability stages of E. coli cells than SYTO9-PI dual staining. Additionally, the overall procedure was more rapid. No marked differences in sensitivity were observed.  相似文献   
9.
10.
Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy associated with mutations in complement proteins, most frequently in the main plasma alternative pathway regulator factor H (FH). The hotspot for the FH mutations is in domains 19–20 (FH19–20) that are indispensable for FH activity on C3b bound covalently to host cells. In aHUS, down-regulation of cell-bound C3b by FH is impaired, but it is not clear whether this is due to an altered FH binding to surface-bound C3b or to cell surface structures. To explore the molecular pathogenesis of aHUS we tested binding of 14 FH19–20 point mutants to C3b and its C3d fragment, mouse glomerular endothelial cells (mGEnC-1), and heparin. The cell binding correlated well, but not fully, with heparin binding and the cell binding site was overlapping but distinct from the C3b/C3d binding site that was shown to extend to domain 19. Our results show that aHUS-associated FH19–20 mutants have different combinations of three primary defects: impaired binding to C3b/C3d, impaired binding to the mGEnC-1 cells/heparin, and, as a novel observation, an enhanced mGEnC-1 cell or heparin binding. We propose a model of the molecular pathogenesis of aHUS where all three mechanisms lead eventually to impaired control of C3b on the endothelial cell surfaces. Based on the results with the aHUS patient mutants and the overlap in FH19–20 binding sites for mGEnC-1/heparin and C3b/C3d we conclude that binding of FH19–20 to C3b/C3d is essential for target discrimination by the alternative pathway.Atypical hemolytic uremic syndrome (aHUS)2 is a familial disease characterized by erythrocyte fragmentation and hematuria, damaged renal endothelium, vascular microthrombi, and thrombocytopenia (1). The syndrome leads ultimately to end-stage renal disease with a high mortality rate (2). In aHUS cases point mutations have been found in complement components C3, factor B, CD46, factor I, and factor H (FH), all of which play a role in the activation or control of the alternative pathway (38). More than half of the mutations have been found to originate in the HF1 gene that encodes FH and FH-like protein 1.The alternative pathway is initiated spontaneously by hydrolysis of C3 to C3H2O that forms the C3-convertase C3H2OBb (9, 10). This enzyme complex converts numerous C3 molecules to C3b that are covalently bound onto practically any nearby surface (11). On a so-called activator surface, such as a microbe, the surface-bound C3b molecules are not efficiently eliminated and therefore new C3bBb complexes are formed leading to more C3b depositions and eventually effective opsonization or damage of the target cell. On non-activator surfaces, such as viable self (host) cells, factor I cleaves C3b to inactive C3b (iC3b) in the presence of one of the cofactors (CD46, CD35, FH, and FHL-1) (1216). FH is the only one of these cofactors that mediates recognition of self-surfaces making the alternative pathway capable of discriminating between activating and non-activating surfaces (1719).The two main functions of FH are to prevent the alternative pathway activation in plasma and on self-surfaces. This 150-kDa glycoprotein consists of 20 tandemly arranged short consensus repeat domains that are composed of ∼60 amino acids. Domains 1–4 are essential for the cofactor and decay accelerating activity (20). In the middle region of FH (domains 5–15) there are two binding sites for C-reactive protein (21), one or two sites for glycosaminoglycans (GAGs) (2225), and one site for C3c part of C3b (C3b/C3c) (25, 26). The C-terminal domains 19–20 (FH19–20) possess binding sites for the thiol ester domain of C3b (C3d or C3dg, TED domain) and GAGs (26, 27).The most common types of mutations found in aHUS are FH missense mutations located within FH19–20 that was recently solved as crystal and NMR structures (2, 28, 29). The C terminus of FH is crucial in self-cell protection as demonstrated by the severity of the aHUS cases and also in a recent mouse model of aHUS where domains 16–20 had been deleted (30, 31). Histopathology of aHUS in these mice had all the characteristics of human aHUS being concordant with the similarity of binding sites for C3b, heparin, and human umbilical vein endothelial cells between human and mouse FH domains 18–20 (32). Binding of mouse or human FH to glomerular endothelial cells has not been characterized despite the fact that in aHUS damage occurs mainly in the small vessels, especially in the glomeruli.The molecular pathogenesis leading to the clinical aHUS in patients with FH mutations remains elusive. The suggested molecular mechanisms for some aHUS-associated mutations include defective binding of the mutated FH to GAGs, endothelial cells, or C3b/C3d (28, 29, 33, 34). The aim of this study was to define the effects of nine aHUS-associated FH mutations and five other structurally closely located mutations on binding of FH19–20 to C3b, C3d, mouse glomerular endothelial cells, and heparin. We identified three primary defects of the mutants: impaired C3b/C3d binding, enhanced mGEnC-1/heparin binding, and impaired mGEnC-1/heparin binding that could lead via three mechanisms to incapability of FH to eliminate C3b on plasma-exposed self-cells. The results clarify the mechanism of target discrimination of the alternative pathway by the C terminus of FH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号