首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
We report nanomicelles of amphotericin B (AmB) using various molar ratios of AmB and sodium deoxycholate sulfate (SDCS) for inhalation with improved stability, solubility, bioactivity, and safety. The particle sizes of all aerosolized formulations are expressed as mass median aerodynamic diameter (0.9–1.6 μm), fine particle fraction (70.3–86.5%), and geometric standard deviation (1.4–2.1) which indicated their sizes are appropriate for use as an inhaler. In vitro cytotoxicity studies conducted using respiratory and kidney cell lines demonstrated that the marketed Fungizone® was toxic to macrophage and embryonic kidney cells and cell viability decreased from 96 to 48% and from 97 to 67%, respectively when the AmB equivalent concentration was increased from 1 to 16 μg/mL. However, AmB-SDCS formulations showed no evidence of toxicity even up to 8 μg/mL compared to Fungizone®. Minimum inhibitory and fungicidal concentrations were significantly reduced against Cryptococcus neoformans, and Candida albicans. Also, antileishmanial activity significantly improved for AmB-SDCS formulations. There was an evidence of phagocytosis of the AmB-SDCS formulation by alveolar macrophages NR 8383. Molecular modeling studies suggested the role of hydrogen bonding in stabilization of the AmB-SDCS complex. This study indicated that AmB-SDCS nanomicelles can be used to design a safe and cost-effective AmB for inhalation.
Graphical abstract ?
  相似文献   
2.
3.
Mupirocin ointment is a widely used topical drug for the treatment of bacterial skin infections. However, ointments have some limitations which motivated the development of a film forming spray of mupirocin. Mupirocin spray (2%) was formulated with Eudragit E100 as a film forming agent and tested for its antibacterial and anti-biofilm activities against Escherichia coli, a skin pathogen causing wound and surgical site infections. Treatment with mupirocin spray resulted in significant antibacterial and anti-biofilm activities (inhibition and disruption) with single spray and sub-actual dose concentrations at par with the commercial ointment concentration. The spray formulation was found to be non-toxic to fibroblast cells and greatly resisted removal from the site of application upon washing, in contrast to the ointment which was significantly removed after a single wash. This is the first study to develop and evaluate a spray formulation for mupirocin that forms a stable thin film for sustained release of the drug.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号