首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
  2023年   1篇
  2021年   2篇
  2018年   2篇
  2017年   2篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2008年   2篇
  2007年   7篇
  2006年   2篇
  2005年   1篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1979年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
Surveillance of illegal use of steroids hormones in cattle breeding is a key issue to preserve human health. To this purpose, an integrated approach has been developed for the analysis of plasma and urine from calves treated orally with a single dose of a combination of the androgenic steroids boldenone and boldione. A quantitative estimation of steroid hormones was obtained by LC-APCI-Q-MS/MS analysis of plasma and urine samples obtained at various times up to 36 and 24 h after treatment, respectively. These experiments demonstrated that boldione was never found, while boldenone alpha- and beta-epimers were detected in plasma and urine only within 2 and 24 h after drug administration, respectively. Parallel proteomic analysis of plasma samples was obtained by combined 2-DE, MALDI-TOF-MS and muLC-ESI-IT-MS/MS procedures. A specific protein, poorly represented in normal plasma samples collected before treatment, was found upregulated even 36 h after hormone treatment. Extensive mass mapping experiments proved this component as an N-terminal truncated form of apolipoprotein A1 (ApoA1), a protein involved in cholesterol transport. The expression profile of ApoA1 analysed by Western blot analysis confirmed a significant and time dependent increase of this ApoA1 fragment. Then, provided that further experiments performed with a growth-promoting schedule will confirm these preliminary findings, truncated ApoA1 may be proposed as a candidate biomarker for steroid boldenone and possibly other anabolic androgens misuse in cattle veal calves, when no traces of hormones are detectable in plasma or urine.  相似文献   
2.
3.
Objective: To define the best conditions foramniotic membrane preparation, storage and banking in its use for cornealreconstruction.Methods: Amniotic membrane pieces were prepared understerile conditions from placentas selected on the basis of donor medical andsocial history, serology, microbiological tests and histology. The pieces werekept at –140 °C but before grafting they werethawed and stored at 4 °C in RPMI medium, to have apreparation usable within 72 h. This procedure was validatedby testing its therapeutic effectiveness in 25 patients 13 of which had cornealulcers of various origin, 3 had sequelae of herpes simplex keratitis, 3 bandkeratopathy and 6 corneal stem cell deficiency due to chemical or thermalburns.Results: The preparation showed appreciableanti-inflammatory and analgesic effects. In the absence of corneal stem celldeficiency a stable re-epithelialisation was achieved in 15 out of 19 patients.When the limbus was lesioned, the amniotic membrane decreased vascularizationand increased the number of corneal epithelial cells only in 1 of the 6patients. No adverse reactions attributable to the tissue were recorded.Conclusions: A ready-to-use amniotic membrane preparationstored at 4 °C after cryopreservation has been tested incorneal reconstruction. Like the amniotic membrane thawed immediately beforegrafting, this preparation displayed full therapeutic effect in epithelialdefects with stromal ulceration but without severe limbal stem cell deficiency.In two years banking activity 463 pieces of the preparation were successfullydistributed to 90 Italian hospitals.  相似文献   
4.
We have cloned and sequenced a cDNA from a human adult skeletal muscle cDNA library, encoding for a novel isoform of alpha-tubulin (tuba8) that is preferentially expressed in heart, skeletal muscle, and testis. A genomic DNA sequence from the chromosomal region 22q11 allowed us to determine the complete structure of the TUBA8 gene that mirrors the canonical exon/intron organization of the vertebrate alpha-tubulin genes. We also cloned and sequenced the cDNA of its murine homologue (MMU-TUBA8). The latter encodes for a protein that differs from its human counterpart in only three amino acids, revealing an extreme rate of conservation that is even extended to both the 3' and 5' UTRs of the mRNAs. Sequence comparison of these novel isoforms with other known alpha tubulins shows that tuba8 is the most divergent member of the mammalian alpha-tubulin family. The sequence peculiarity of the human and murine tuba8 strongly suggests that they might have functional significance and, according to the multi-tubulin hypothesis, that they might play specific functional roles in the cell cytoskeleton.  相似文献   
5.
The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health.  相似文献   
6.
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive soft-tissue sarcomas, characterized by complex karyotypes. The molecular bases of such malignancy are poorly understood and efficient targeted molecular therapies are currently lacking. Here we describe a novel zebrafish model of MPNSTs, represented by the transgenic mutant line Tg(-8.5nkx2.2a:GFP) ia2. ia2 homozygous animals displayed embryonic lethality by 72 hpf, while the heterozygotes develop visible tumor masses with high frequency in adulthood. Histological and immunohistochemical examination revealed aggressive tumors with either mesenchymal or epithelial features. The former (54% of the cases) arose either in the abdominal cavity, or as intrathecal/intraspinal lesions and is composed of cytokeratin-negative spindle cells with fascicular/storiform growth pattern consistent with zebrafish MPNSTs. The second histotype was composed by polygonal or elongated cells, immunohistochemically positive for the pan-cytokeratin AE1/AE3. The overall histologic and immunohistochemical features were consistent with a malignant epithelial neoplasm of possible gastrointestinal/pancreatic origin. With an integrated approach, based on microsatellite (VNTR) and STS markers, we showed that ia2 insertion, in Tg(-8.5nkx2.2a:GFP) ia2 embryos, is associated with a deletion of 15.2 Mb in the telomeric portion of chromosome 1. Interestingly, among ia2 deleted genes we identified the presence of the 40S ribosomal protein S6 gene that may be one of the possible drivers for the MPNSTs in ia2 mutants. Thanks to the peculiar features of zebrafish as animal model of human cancer (cellular and genomic similarity, transparency and prolificacy) and the GFP tag, the Tg(-8.5nkx2.2a:GFP) ia2 line provides a manageable tool to study in vivo with high frequency MPNST biology and genetics, and to identify, in concert with the existing zebrafish MPNST models, conserved relevant mechanisms in zebrafish and human cancer development.  相似文献   
7.
Sulfated glycosaminoglycan chains of extracellular matrix and cell membrane-tethered proteoglycans exert specific cellular functions by interacting with a broad spectrum of morphogens and growth factors.In humans, a congenital impaired catabolism of sulfated glycosaminoglycans is associated with severe metabolic disorders. Here, we report on the identification and characterization of a zebrafish iduronate sulfatase orthologue. By knocking down its function with antisense morpholino oligos, we demonstrate that iduronate sulfatase plays a critical role during early vertebrate development and its downregulation may be responsible for severe developmental defects, including a misshapen trunk and abnormal craniofacial cartilages. We show that the altered cartilage patterning is mediated by depauperation of sox10-expressing neural crest cell precursors. Through the application of a transactivation reporter assay, we also provide a molecular proof that increased TGFβ (Transforming Growth Factor β) signalling is tightly associated with downregulation of iduronate sulfatase function. Our results provide an insight into the early biological impairments underlying the Hunter syndrome and suggest the use of zebrafish as a novel tool to better understand lysosomal storage disorder pathogenesis.  相似文献   
8.
The nitric oxide synthase of Drosophila melanogaster (dNOS) participates in essential developmental and behavioral aspects of the fruit fly, but little is known about dNOS catalysis and regulation. To address this, we expressed a construct comprising the dNOS reductase domain and its adjacent calmodulin (CaM) binding site (dNOSr) and characterized the protein regarding its catalytic, kinetic, and regulatory properties. The Ca2+ concentration required for CaM binding to dNOSr was between that of the mammalian endothelial and neuronal NOS enzymes. CaM binding caused the cytochrome c reductase activity of dNOSr to increase 4 times and achieve an activity comparable to that of mammalian neuronal NOS. This change was associated with decreased shielding of the FMN cofactor from solvent and an increase in the rate of NADPH-dependent flavin reduction. Flavin reduction in dNOSr was relatively slow following the initial 2-electron reduction, suggesting a slow inter-flavin electron transfer, and no charge-transfer complex was observed between bound NADP+ and reduced FAD during the process. We conclude that dNOSr catalysis and regulation is most similar to the mammalian neuronal NOS reductase domain, although differences exist in their flavin reduction behaviors. The apparent conservation between the fruit fly and mammalian enzymes is consistent with dNOS operating in various signal cascades that involve NO.  相似文献   
9.
The neuronal nitric-oxide synthase (nNOS) flavoprotein domain (nNOSr) contains regulatory elements that repress its electron flux in the absence of bound calmodulin (CaM). The repression also requires bound NADP(H), but the mechanism is unclear. The crystal structure of a CaM-free nNOSr revealed an ionic interaction between Arg(1400) in the C-terminal tail regulatory element and the 2'-phosphate group of bound NADP(H). We tested the role of this interaction by substituting Ser and Glu for Arg(1400) in nNOSr and in the full-length nNOS enzyme. The CaM-free nNOSr mutants had cytochrome c reductase activities that were less repressed than in wild-type, and this effect could be mimicked in wild-type by using NADH instead of NADPH. The nNOSr mutants also had faster flavin reduction rates, greater apparent K(m) for NADPH, and greater rates of flavin auto-oxidation. Single-turnover cytochrome c reduction data linked these properties to an inability of NADP(H) to cause shielding of the FMN module in the CaM-free nNOSr mutants. The full-length nNOS mutants had no NO synthesis in the CaM-free state and had lower steady-state NO synthesis activities in the CaM-bound state compared with wild-type. However, the mutants had faster rates of ferric heme reduction and ferrous heme-NO complex formation. Slowing down heme reduction in R1400E nNOS with CaM analogues brought its NO synthesis activity back up to normal level. Our studies indicate that the Arg(1400)-2'-phosphate interaction is a means by which bound NADP(H) represses electron transfer into and out of CaM-free nNOSr. This interaction enables the C-terminal tail to regulate a conformational equilibrium of the FMN module that controls its electron transfer reactions in both the CaM-free and CaM-bound forms of nNOS.  相似文献   
10.
Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca(2+)/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and biochemistry with crystal structure determination of a fully assembled, electron-supplying, neuronal NOS reductase dimer. By integrating these results, we structurally elucidate the unique mechanisms for isozyme-specific regulation of electron transfer in NOS. Our discovery of the autoinhibitory helix, its placement between domains, and striking similarities with canonical calmodulin-binding motifs, support new mechanisms for NOS inhibition. NADPH, isozyme-specific residue Arg(1400), and the C-terminal tail synergistically repress NOS activity by locking the FMN binding domain in an electron-accepting position. Our analyses suggest that calmodulin binding or C-terminal tail phosphorylation frees a large scale swinging motion of the entire FMN domain to deliver electrons to the catalytic module in the holoenzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号