首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8943篇
  免费   648篇
  国内免费   939篇
  2024年   23篇
  2023年   156篇
  2022年   327篇
  2021年   562篇
  2020年   395篇
  2019年   490篇
  2018年   420篇
  2017年   352篇
  2016年   464篇
  2015年   630篇
  2014年   693篇
  2013年   749篇
  2012年   882篇
  2011年   751篇
  2010年   415篇
  2009年   397篇
  2008年   420篇
  2007年   366篇
  2006年   321篇
  2005年   255篇
  2004年   218篇
  2003年   181篇
  2002年   156篇
  2001年   151篇
  2000年   115篇
  1999年   101篇
  1998年   69篇
  1997年   71篇
  1996年   70篇
  1995年   54篇
  1994年   49篇
  1993年   31篇
  1992年   41篇
  1991年   20篇
  1990年   25篇
  1989年   19篇
  1988年   16篇
  1987年   16篇
  1986年   11篇
  1985年   18篇
  1984年   9篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
2.
Compelling evidence suggests the limitation and shortcomings of the current and well established cell culture method using multi-well plates, flasks and Petri dishes. These are particularly important when cell functions are sensitive to the local microenvironment, cell–cell and cell–extracellular matrix interactions. There is a clear need for advanced cell culture systems which mimic in vivo and more physiological conditions. This review summarises and analyses recent progress in three dimensional (3D) cell culture with perfusion as the next generation cell culture tools, while excluding engineered tissue culture where three dimensional scaffold has to be used for structural support and perfusion for overcoming mass transfer control. Apart from research activities in academic community, product development in industry is also included in this review.  相似文献   
3.
The fecundity reduction with aging is referred as the reproductive aging which comes earlier than that of chronological aging. Since humans have postponed their childbearing age, to prolong the reproductive age becomes urgent agenda for reproductive biologists. In the current study, we examined the potential associations of α‐ketoglutarate (α‐KG) and reproductive aging in mammals including mice, swine, and humans. There is a clear tendency of reduced α‐KG level with aging in the follicle fluids of human. To explore the mechanisms, mice were selected as the convenient animal model. It is observed that a long term of α‐KG administration preserves the ovarian function, the quality and quantity of oocytes as well as the telomere maintaining system in mice. α‐KG suppresses ATP synthase and alterations of the energy metabolism trigger the nutritional sensors to down‐regulate mTOR pathway. These events not only benefit the general aging process but also maintain ovarian function and delay the reproductive decline. Considering the safety of the α‐KG as a naturally occurring molecule in energy metabolism, its utility in reproduction of large mammals including humans deserves further investigation.  相似文献   
4.
Intestinal mucosal injuries are directly or indirectly related to many common acute and chronic diseases. Long non-coding RNAs (lncRNAs) are expressed in many diseases, including intestinal mucosal injury. However, the relationship between lncRNAs and intestinal mucosal injury has not been determined. Here, we investigated the functions and mechanisms of action of lncRNA Bmp1 on damaged intestinal mucosa. We found that Bmp1 was increased in damaged intestinal mucosal tissue and Bmp1 overexpression was able to alleviate intestinal mucosal injury. Bmp1 overexpression was found to influence cell proliferation, colony formation, and migration in IEC-6 or HIEC-6 cells. Moreover, miR-128-3p was downregulated after Bmp1 overexpression, and upregulation of miR-128-3p reversed the effects of Bmp1 overexpression in IEC-6 cells. Phf6 was observed to be a target of miR-128-3p. Furthermore, PHF6 overexpression affected IEC-6 cells by activating PI3K/AKT signaling which was mediated by the miR-128-3p/PHF6 axis. In conclusion, Bmp1 was found to promote the expression of PHF6 through the sponge miR-128-3p, activating the PI3K/AKT signaling pathway to promote cell migration and proliferation.Subject terms: Cell growth, Cell migration  相似文献   
5.
  相似文献   
6.
7.
8.
吴清  冯嘉晓  陈刚  陈婷婷 《生态学报》2020,40(16):5560-5570
以德庆县金林水乡为例,采用参与式观察和空间统计法,选取2000、2008年和2018年3个时段分析旅游发展对山岳型乡村旅游地"三生"空间的影响,并探讨了金林水乡"三生"空间的发展瓶颈及优化路径。研究发现:(1)旅游开发前,金林水乡土地结构与用地功能单一且呈片状分布;村落呈现传统乡村风貌,基础设施不健全;空间形态变化稳定,扩张缓慢。(2)旅游开发后,土地利用类型多样化,出现新型复合用地;土地功能利用复杂化,以服务旅游业为主;村庄景观风貌现代化,生活空间更加宜居。(3)旅游开发前后对比可得,土地平面占地规模化,空间用地以居民点为核心,呈圈层状向外围扩张;生产-生活-生态空间相互转化,乡村聚落重构特征较为显著;村落景观风貌的变化较大,呈现城镇化趋势。(4)金林水乡"三生"空间演化与旅游发展存在的问题表现在生产用地效率不高,生活用地质量较低,生态空间不断萎缩,在旅游产业发展上表现为旅游产品单一且缺乏创新,旅游服务功能不完善等。为此从生活空间的提质、生产空间增效、生态空间保护、旅游产业创新以及土地利用五方面提出优化建议。  相似文献   
9.
The CDKN1C gene encodes a cyclin‐dependent kinase inhibitor and is one of the key genes involved in the development of Beckwith–Wiedemann syndrome and cancer. In this study, using a direct sequencing approach based on a single nucleotide polymorphism (SNP) at genomic DNA and cDNA levels, we show that CDKN1C exhibits monoallelic expression in all seven studied organs (heart, liver, spleen, lung, kidney, muscle and subcutaneous fat) in cattle. To investigate how methylation regulates imprinting of CDKN1C in cattle, allele‐specific methylation patterns in two putative differential methylation regions (DMRs), the CDKN1C DMR and KvDMR1, were analyzed in three tissues (liver, spleen and lung) using bisulfite sequencing PCR. Our results show that in the CDKN1C DMR both parental alleles were unmethylated in all three analyzed tissues. In contrast, KvDMR1 was differentially methylated between the two parental alleles in the same tissues. Statistical analysis showed that there is a significant difference in the methylation level between the two parental alleles (< 0.01), confirming that this region is the DMR of KvDMR1 and that it may be correlated with CDKN1C imprinting.  相似文献   
10.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号