首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  国内免费   1篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2006年   1篇
  2004年   1篇
  1996年   1篇
排序方式: 共有19条查询结果,搜索用时 444 毫秒
1.
A novel rutin-α-L-rhamnosidase hydrolyzing α-L-rhamnoside of rutin, naringin, and hesperidin was purified and characterized from Aspergillus niger DLFCC-90, and the gene encoding this enzyme, which is highly homologous to the α-amylase gene, was cloned and expressed in Pichia pastoris GS115. The novel enzyme was classified in glycoside-hydrolase (GH) family 13.  相似文献   
2.
The effects of elevated CO2 (eCO2) on the relative uptake of inorganic and organic nitrogen (N) are unclear. The uptake of different N sources by pak choi (Brassica chinensis L.) seedlings supplied with a mixture of nitrate, glycine and ammonium was studied using 15N‐labelling under ambient CO2 (aCO2) (350 ppm) or eCO2 (650 ppm) conditions. 15N‐labelled short‐term uptake and 15N‐gas chromatography mass spectrometry (GC–MS) were applied to measure the effects of eCO2 on glycine uptake and metabolism. Elevated CO2 increased the shoot biomass by 36% over 15 days, but had little effect on root growth. Over the same period, the N concentrations of shoots and roots were decreased by 30 and 2%, respectively. Elevated CO2 enhanced the uptake and N contribution of glycine, which accounted for 38–44% and 21–40% of total N uptake in roots and shoots, respectively, while the uptake of nitrate and ammonium was reduced. The increased glycine uptake resulted from the enhanced active uptake and enhanced metabolism in the roots. We conclude that eCO2 may increase the uptake and contribution of organic N forms to total plant N nutrition. Our findings provide new insights into plant N regulation under eCO2 conditions.  相似文献   
3.
土壤中水溶性有机质及其对重金属化学与生物行为的影响   总被引:35,自引:3,他引:35  
土壤水溶性有机质是陆地生态系统和水生生态系统中一种重要的、很活跃的化学组分,已成为环境科学、土壤学和生态学等学科的研究热点.土壤DOM对重金属化学与生物行为有重要影响。但其机理尚不清楚.文中从土壤性质、环境条件、人为因素等方面阐述了土壤DOM产生及影响因素,总结评述了DOM对重金属化学行为和生物有效性的影响,将DOM对重金属的影响机制归纳为络合机制、竞争吸附机制、酸碱缓冲机制.在此基础上,提出了DOM研究存在的问题及其展望.  相似文献   
4.
Guo  Xinyu  Liu  Yuankun  Zhang  Ran  Luo  Jipeng  Song  Yuchao  Li  Jinxing  Wu  Keren  Peng  Liangcai  Liu  Yuying  Du  Yilin  Liang  Yongchao  Li  Tingqiang 《Plant and Soil》2020,455(1-2):241-255
Plant and Soil - Plant growth in the Arctic is often nutrient limited due to temperature constraints on decomposition and low atmospheric input of nitrogen (N). Local hotspots of nutrient...  相似文献   
5.
6.
The combined effects of elevated CO_2 and cadmium(Cd) on photosynthetic rate,chlorophyll fluorescence and Cd accumulation in hyperaccumulator Sedum alfredii Hance were investigated to predict plant growth under Cd stress with rising atmospheric CO_2 concentration.Both pot and hydroponic experiments were conducted and the plants were grown under ambient(350 μL L~(-1)) or elevated(800 μL L~(-1))CO_2.Elevated CO_2 significantly(P 0.05) increased Pn(105%-149%),Pn_(max)(38.8%-63.0%) and AQY(20.0%-34.8%) of S.alfredii in all the Cd treatments,but reduced chlorophyll concentration,dark respiration and photorespiration.After 10 days growth in medium with 50μM Cd under elevated CO_2,PSII activities were significantly enhanced(P 0.05) with Pm,Fv/Fm,Φ(Ⅱ) and qP increased by 66.1%,7.5%,19.5%and 16.4%,respectively,as compared with ambient-grown plants.Total Cd uptake in shoot of S.alfredii grown under elevated CO_2 was increased by 44.1%-48.5%,which was positively correlated with the increase in Pn.These results indicate that elevated CO_2 promoted the growth of 5.alfredii due to increased photosynthetic carbon uptake rate and photosynthetic lightuse efficiency,and showed great potential to improve the phytoextraction of Cd by S.alfredii.  相似文献   
7.
Yang X  Li T  Yang J  He Z  Lu L  Meng F 《Planta》2006,224(1):185-195
Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 μM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 μM for 48 h. At 1,000 μM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.  相似文献   
8.

Aims

This study examined the effect of elevated CO2 on plant growth, root morphology and Cd accumulation in S. alfredii, and assessed the possibility of using elevated CO2 as fertilizer to enhance phytoremediation efficiency of Cd-contaminated soil by S. alfredii.

Methods

Both soil pot culture and hydroponic experiments were carried out to characterize plant biomass, root morphological parameters, and cadmium uptake in S. alfredii grown under ambient (350 μL L?1) or elevated (800 μL L?1) CO2.

Results

Elevated CO2 prompted the growth of S. alfredii, shoot and root biomass were increased by 24.6–36.7% and 35.0–52.1%, respectively, as compared with plants grown in ambient CO2. After 10 days growth in medium containing 50 μM Cd under elevated CO2, the development of lateral roots and root hairs were stimulated, additionally, root length, surface area, root volume and tip number were increased significantly, especially for the finest diameter roots. The total Cd uptake per pot was significantly greater under elevated CO2 than under ambient CO2. After 60 d growth, Cd phytoextraction efficiency was increased significantly in the elevated CO2 treatment.

Conclusions

Results suggested that the use of elevated CO2 may be a useful way to improve phytoremediation efficiency of Cd-contaminated soil by S. alfredii.  相似文献   
9.
Luo  Jipeng  Tao  Qi  Wu  Keren  Li  Jinxing  Qian  Jie  Liang  Yongchao  Yang  Xiaoe  Li  Tingqiang 《Applied microbiology and biotechnology》2017,101(21):7961-7976
Applied Microbiology and Biotechnology - Interactions between roots and microbes affect plant’s resistance to abiotic stress. However, the structural and functional variation of...  相似文献   
10.
Abscisic acid (ABA) is a key phytohormone underlying plant resistance to toxic metals. However, regulatory effects of ABA on apoplastic transport in roots and consequences for uptake of metal ions are poorly understood. Here, we demonstrate how ABA regulates development of apoplastic barriers in roots of two ecotypes of Sedum alfredii and assess effects on cadmium (Cd) uptake. Under Cd treatment, increased endogenous ABA level was detected in roots of nonhyperaccumulating ecotype (NHE) due to up‐regulated expressions of ABA biosynthesis genes (SaABA2, SaNCED), but no change was observed in hyperaccumulating ecotype (HE). Simultaneously, endodermal Casparian strips (CSs) and suberin lamellae (SL) were deposited closer to root tips of NHE compared with HE. Interestingly, the vessel‐to‐CSs overlap was identified as an ABA‐driven anatomical trait. Results of correlation analyses and exogenous applications of ABA/Abamine indicate that ABA regulates development of both types of apoplastic barriers through promoting activities of phenylalanine ammonialyase, peroxidase, and expressions of suberin‐related genes (SaCYP86A1, SaGPAT5, and SaKCS20). Using scanning ion‐selected electrode technique and PTS tracer confirmed that ABA‐promoted deposition of CSs and SL significantly reduced Cd entrance into root stele. Therefore, maintenance of low ABA levels in HE minimized deposition of apoplastic barriers and allowed maximization of Cd uptake via apoplastic pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号