首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  7篇
  2013年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Species identification can be interesting in a wide range of areas, for example, in forensic applications, food monitoring and in archeology. The vast majority of existing DNA typing methods developed for species determination, mainly focuses on a single species source. There are, however, many instances where all species from mixed sources need to be determined, even when the species in minority constitutes less than 1 % of the sample. The introduction of next generation sequencing opens new possibilities for such challenging samples. In this study we present a universal deep sequencing method using 454 GS Junior sequencing of a target on the mitochondrial gene 16S rRNA. The method was designed through phylogenetic analyses of DNA reference sequences from more than 300 mammal species. Experiments were performed on artificial species-species mixture samples in order to verify the method’s robustness and its ability to detect all species within a mixture. The method was also tested on samples from authentic forensic casework. The results showed to be promising, discriminating over 99.9 % of mammal species and the ability to detect multiple donors within a mixture and also to detect minor components as low as 1 % of a mixed sample.  相似文献   
2.
3.
BACKGROUND: Recent reports identify the 3'-UTR of insulin mRNA as crucial for control of insulin messenger stability. This region contains a pyrimidine-rich sequence, which is similar to the hypoxia-responsive mRNA-stabilizing element of tyrosine hydroxylase. This study aimed to determine whether hypoxia affects insulin mRNA levels. MATERIALS AND METHODS: Rat islets were incubated at normoxic or hypoxic conditions and with or without hydrogen peroxide and a nitric oxide donor. Insulin mRNA was determined by Northern hybridization. Islet homogenates were used for electrophoretic mobility shift assay with an RNA-oligonucleotide, corresponding to the pyrimidine-rich sequence of the 3'-UTR of rat insulin I mRNA. The expression of reporter gene mRNA, in islets transfected with reporter gene constructs containing the wild-type or mutated insulin mRNA pyrimidine-rich sequences, was measured by semiquantitive RT-PCR. RESULTS: Insulin mRNA was increased in response to hypoxia. This was paralleled by increased binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich sequence of the 3'-UTR of insulin mRNA, which was counteracted by hydrogen peroxide. The reporter gene mRNA level containing the wild-type binding site was not increased in response to hypoxia, but mutation of the site resulted in a destabilization of the mRNA. CONCLUSIONS: The complete understanding of different diabetic conditions requires the elucidation of mechanisms that control insulin gene expression. Our data show that hypoxia may increase insulin mRNA levels by promoting the binding of PTB to the insulin mRNA 3'-UTR. Hydrogen peroxide abolishes the hypoxic effect indicating involvement of reactive oxygen species and/or the redox potential in the oxygen-signaling pathway.  相似文献   
4.
Poly(ADP-ribose) polymerase (PARP), which is activated by DNA strand breaks, is involved in DNA repair and replication but, during apoptosis, undergoes early caspase-mediated cleavage. Activation of programmed cell death in response to DNA damage may rely on functional p53 protein. Tumor cells are commonly deficient in this oncogene product resulting in resistance to many cytostatic drugs. Here we report that nicotinamide-induced inhibition of poly(ADP-ribosyl)ation and cytokine-induced nitric oxide production both result in a transient increase in p53 levels in pancreatic tumor RINm5F cells. These treatments also induce disruption of the mitochondrial membrane potential (m), as revealed using the mitochondrial probe JC-1, followed by PARP cleavage and apoptosis all of which are inhibited by the anti-apoptotic protein Bcl-2. Moreover, PARP-inhibition by nicotinamide or 3-aminobenzamide induces apoptosis and/or cell cycle arrest at the G2 checkpoint in all of four tested tumor cell lines of both mesenchymal and epithelial origin including mouse NIH-3T3 cells and p53 deficient human HeLa and Jurkat cells. Bcl-2 counteracts cytokine-, but not nicotinamide-induced G2 arrest. These findings indicate that both chemical and caspase-mediated inhibition of PARP activity, possibly by interfering with DNA replication and repair, may promote a p53-independent G2 arrest and apoptosis.  相似文献   
5.
Stabilization of insulin mRNA in response to glucose is a significant component of insulin production, but the mechanisms governing this process are unknown. We presently observe that insulin mRNA is a highly abundant messenger and that the content of this mRNA is mainly controlled by changes in messenger stability. We also demonstrate specific binding of the polypyrimidine tract-binding protein to a pyrimidine-rich sequence located in the 3'-untranslated region (3'-UTR) of insulin mRNA. This binding was increased in vitro by dithiothreitol and in vivo by glucose. Inhibition of polypyrimidine tract-binding protein binding to the pyrimidine-rich sequence by mutation of the core binding site resulted in a destabilization of a reporter gene mRNA. Thus, glucose-induced binding of polypyrimidine tract-binding protein to the 3'-UTR of insulin mRNA could be a necessary event in the control of insulin mRNA levels.  相似文献   
6.
7.
Engraftment (i.e., the adaptation of transplanted pancreatic islets to their new surroundings with regard to revascularization, reinnervation, and reorganization of other stromal compartments) is of crucial importance for the survival and function of the endocrine cells. Previous studies suggest that transplantation induces both vascular and stromal dysfunctions in the implanted islets when compared with endogenous islets. Thus the vascular density and the blood perfusion of islet grafts is decreased and accompanied with a capillary hypertension. This leads to hypoxic conditions, with an associated shift toward anaerobic metabolism in grafted islets. An improved engraftment will prevent or compensate for the vascular/stromal dysfunction seen in transplanted islets and thereby augment survival of the islet implant. By such means the number of islets needed to cure the recipient will be lessened. This will increase the number of patients that can be transplanted with the limited material available.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号