首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  40篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   1篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2000年   2篇
  1999年   2篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation, MK2−/− mice are protected against inflammation in different disease models. Therefore, MK2 is considered an attractive therapeutic target for the treatment of chronic inflammatory diseases. This study tested the impact of MK2-deficiency on high-fat diet (HFD)-induced adipose tissue inflammation and insulin resistance. After feeding MK2−/− and WT control mice a HFD (60% energy from fat) for 24 weeks, body weight was not different between groups. Also, liver weight and the amount of abdominal fat remained unchanged. However, in MK2−/− mice plasma cholesterol levels were significantly increased. Surprisingly, macrophage infiltration in adipose tissue was not altered. However, adipose tissue macrophages were more skewed to the inflammatory M1 phenotype in MK2−/− mice. This differerence in macrophage polarization did however not translate in significantly altered expression levels of Mcp-1, Tnfα and Il6. Glucose and insulin tolerance tests demonstrated that MK2−/− mice had a significantly reduced glucose tolerance and increased insulin resistance. Noteworthy, the expression of the insulin-responsive glucose transporter type 4 (GLUT4) in adipose tissue of MK2−/− mice was reduced by 55% (p<0.05) and 33% (p<0.05) on the mRNA and protein level, respectively, compared to WT mice. In conclusion, HFD-fed MK2−/− display decreased glucose tolerance and increased insulin resistance compared to WT controls. Decreased adipose tissue expression of GLUT4 might contribute to this phenotype. The data obtained in this study indicate that clinical use of MK2 inhibitors has to be evaluated with caution, taking potential metabolic adverse effects into account.  相似文献   
2.
The acute-phase protein secretory phospholipase A2 (sPLA2) influences the metabolism of high-density lipoproteins (HDL). The adrenals are known to utilize HDL cholesterol as a source of sterols. The aim of the present study was to test the hypothesis that sPLA2 enhances the selective uptake of HDL into the adrenals in response to acute inflammation as a possible physiological role for the sPLA2-HDL interaction. Human sPLA2-transgenic mice, in which sPLA2 expression is upregulated by inflammatory stimuli, were used. Ten hours after induction of the acute-phase response (APR) by injection of bacterial lipopolysaccharide (LPS), plasma levels of HDL cholesterol decreased significantly in sPLA2-transgenic mice (-18%, P < 0.05) but remained unchanged in wild-type mice. The fractional catabolic rates of both 125I-labeled tyraminecellobiose (TC)-HDL and [3H]cholesteryl ether increased significantly in the sPLA2-transgenic mice after induction of the APR (0.18 +/- 0.01 vs. 0.21 +/- 0.01 pool/h, P < 0.05, and 0.31 +/- 0.02 vs. 0.42 +/- 0.05 pool/h, P < 0.05, respectively) but remained unchanged in the wild-type mice (0.10 +/- 0.01 vs. 0.22 +/- 0.02 pool/h, respectively). After induction of the APR, in both groups HDL holoparticle uptake by the liver was increased (P < 0.001). sPLA2-transgenic mice had 2.4-fold higher selective uptake into the adrenals after induction of the APR than wild-type mice (156 +/- 6 vs. 65 +/- 5%/ micro g tissue protein, P < 0.001). In summary, upregulation of sPLA2 expression during the APR specifically increases the selective uptake of HDL cholesteryl ester into the adrenals. These data suggest a novel metabolic role for sPLA2: modification of HDL during the APR to promote increased adrenal uptake of HDL cholesteryl ester to serve as source for steroid hormone synthesis.  相似文献   
3.

Background

High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated.

Methodology/Principal Findings

To interrogate this apparent paradox, we have quantified de novo lipogenesis in C57Bl/6J mice fed either chow, a high-fat or a n-3 polyunsaturated fatty acid (PUFA)-enriched high-fat diet. A novel approach based on mass isotopomer distribution analysis (MIDA) following 1-13C acetate infusion was applied to simultaneously determine de novo lipogenesis, fatty acid elongation as well as cholesterol synthesis. Furthermore, we measured very low density lipoprotein-triglyceride (VLDL-TG) production rates. High-fat feeding promoted hepatic lipid accumulation and induced the expression of lipogenic and cholesterogenic genes compared to chow-fed mice: induction of gene expression was found to translate into increased oleate synthesis. Interestingly, this higher lipogenic flux (+74 µg/g/h for oleic acid) in mice fed the high-fat diet was mainly due to an increased hepatic elongation of unlabeled palmitate (+66 µg/g/h) rather than to elongation of de novo synthesized palmitate. In addition, fractional cholesterol synthesis was increased, i.e. 5.8±0.4% vs. 8.1±0.6% for control and high fat-fed animals, respectively. Hepatic VLDL-TG production was not affected by high-fat feeding. Partial replacement of saturated fat by fish oil completely reversed the lipogenic effects of high-fat feeding: hepatic lipogenic and cholesterogenic gene expression levels as well as fatty acid and cholesterol synthesis rates were normalized.

Conclusions/Significance

High-fat feeding induces hepatic fatty acid synthesis in mice, by chain elongation and subsequent desaturation rather than de novo synthesis, while VLDL-TG output remains unaffected. Suppression of lipogenic fluxes by fish oil prevents from high fat diet-induced hepatic steatosis in mice.  相似文献   
4.
Plasma levels of high density lipoprotein (HDL) cholesterol and its major protein component apolipoprotein (apo) A-I are significantly reduced in both acute and chronic inflammatory conditions, but the basis for this phenomenon is not well understood. We hypothesized that secretory phospholipase A(2) (sPLA(2)), an acute phase protein that has been found in association with HDL, promotes HDL catabolism. A series of HDL metabolic studies were performed in transgenic mice that specifically overexpress human sPLA(2) but have no evidence of local or systemic inflammation. We found that HDL isolated from these mice have a significantly lower phospholipid and cholesteryl ester and significantly greater triglyceride content. The fractional catabolic rate (FCR) of (125)I-HDL was significantly faster in sPLA(2) transgenic mice (4.08 +/- 0.01 pools/day) compared with control wild-type littermates (2.16 +/- 0.48 pools/day). (125)I-HDL isolated from sPLA(2) transgenic mice was catabolized significantly faster than (131)I-HDL isolated from wild-type mice after injection in wild-type mice (p < 0.001). Injection of (125)I-tyramine-cellobiose-HDL demonstrated significantly greater degradation of HDL apolipoproteins in the kidneys of sPLA(2) transgenic mice compared with control mice (p < 0.05). The fractional catabolic rate of [(3)H]cholesteryl ether HDL was significantly faster in sPLA(2)-overexpressing mice (6.48 +/- 0.24 pools/day) compared with controls (4.80 +/- 0.72 pools/day). Uptake of [(3)H] cholesteryl ether into the livers and adrenals of sPLA(2) transgenic mice was significantly enhanced compared with control mice. In summary, these data demonstrate that overexpression of sPLA(2) alone in the absence of inflammation causes profound alterations of HDL metabolism in vivo and are consistent with the hypothesis that sPLA(2) may promote HDL catabolism in acute and chronic inflammatory conditions.  相似文献   
5.
The impact of apolipoprotein C-I (apoC-I) deficiency on hepatic lipid metabolism was addressed in mice in the presence or the absence of cholesteryl ester transfer protein (CETP). In addition to the expected moderate reduction in plasma cholesterol levels, apoCIKO mice showed significant increases in the hepatic content of cholesteryl esters (+58%) and triglycerides (+118%) and in biliary cholesterol concentration (+35%) as compared with wild-type mice. In the presence of CETP, hepatic alterations resulting from apoC-I deficiency were enforced, with up to 58% and 302% increases in hepatic levels of cholesteryl esters and triglycerides in CETPTg/apoCIKO mice versus CETPTg mice, respectively. Biliary levels of cholesterol, phospholipids, and bile acids were increased by 88, 77, and 20%, respectively, whereas total cholesterol, HDL cholesterol, and triglyceride concentrations in plasma were further reduced in CETPTg/apoCIKO mice versus CETPTg mice. Finally, apoC-I deficiency was not associated with altered VLDL production rate. In line with the previously recognized inhibition of lipoprotein clearance by apoC-I, apoC-I deficiency led to decreased plasma lipid concentration, hepatic lipid accumulation, and increased biliary excretion of cholesterol. The effect was even greater when the alternate reverse cholesterol transport pathway via VLDL/LDL was boosted in the presence of CETP.  相似文献   
6.
Group IIA secretory phospholipase A2 (sPLA2) is an acute-phase protein mediating decreased plasma HDL cholesterol and increased atherosclerosis. This study investigated the impact of macrophage-specific sPLA2 overexpression on lipoprotein metabolism and atherogenesis. Macrophages from sPLA2 transgenic mice have 2.5 times increased rates of LDL oxidation (thiobarbituric acid-reactive substances formation) in vitro (59 +/- 5 vs. 24 +/- 4 nmol malondialdehyde/mg protein; P < 0.001) dependent on functional 12/15-lipoxygenase (12/15-LO). Low density lipoprotein receptor-deficient (LDLR-/-) mice were transplanted with bone marrow from either sPLA2 transgenic mice (sPLA2--> LDLR-/-; n = 19) or wild-type C57BL/6 littermates (C57 BL/6-->LDLR-/-; n = 19) and maintained for 8 weeks on chow and then for 9 weeks on a Western-type diet. Plasma sPLA2 activity and plasma lipoprotein profiles were not significantly different between sPLA2-->LDLR-/- and C57BL/6-->LDLR-/- mice. Aortic root atherosclerosis was increased by 57% in sPLA2-->LDLR-/- mice compared with C57BL/6-->LDLR-/- controls (P < 0.05). Foam cell formation in vitro and in vivo was increased significantly. Urinary, plasma, and aortic levels of the isoprostane 8,12-iso-iPF2alpha-VI and aortic levels of 12/15-LO reaction products were each significantly higher (P < 0.001) in sPLA2-->LDLR-/- compared with C57BL/6-->LDLR-/- mice, indicating significantly increased in vivo oxidative stress in sPLA2--> LDLR-/-. These data demonstrate that macrophage-specific overexpression of human sPLA2 increases atherogenesis by directly modulating foam cell formation and in vivo oxidative stress without any effect on systemic sPLA2 activity and lipoprotein metabolism.  相似文献   
7.
Recent studies have indicated that direct intestinal secretion of plasma cholesterol significantly contributes to fecal neutral sterol loss in mice. The physiological relevance of this novel route, which represents a part of the reverse cholesterol transport pathway, has not been directly established in vivo as yet. We have developed a method to quantify the fractional and absolute contributions of several cholesterol fluxes to total fecal neutral sterol loss in vivo in mice, by assessing the kinetics of orally and intravenously administered stable isotopically labeled cholesterol combined with an isotopic approach to assess the fate of de novo synthesized cholesterol. Our results show that trans-intestinal cholesterol excretion significantly contributes to removal of blood-derived free cholesterol in C57Bl6/J mice (33% of 231 μmol/kg/day) and that pharmacological activation of LXR with T0901317 strongly stimulates this pathway (63% of 706 μmol/kg/day). Trans-intestinal cholesterol excretion is impaired in mice lacking Abcg5 (−4%), suggesting that the cholesterol transporting Abcg5/Abcg8 heterodimer is involved in this pathway. Our data demonstrate that intestinal excretion represents a quantitatively important route for fecal removal of neutral sterols independent of biliary secretion in mice. This pathway is sensitive to pharmacological activation of the LXR system. These data support the concept that the intestine substantially contributes to reverse cholesterol transport.Reverse cholesterol transport (RCT)3 is defined as the flux of excess cholesterol from peripheral tissues toward the liver followed by biliary secretion and subsequent disposal via the feces (1). Accumulation of cholesterol in macrophages in the vessel wall is considered a primary event in the development of atherosclerosis and, therefore, removal of excess cholesterol from these cells is of crucial importance for prevention and/or treatment of atherosclerotic cardiovascular diseases. It is generally accepted that HDL is the obligate transport vehicle in RCT and that plasma HDL levels reflect the capacity to accommodate this flux. In line herewith, HDL-raising therapies are currently considered as a promising strategy for prevention and treatment of atherosclerotic cardiovascular diseases (2). In the “classical” scenario, the liver has a central role in RCT (3). Biliary secretion of free cholesterol, facilitated by the heterodimeric ABC-transporter ABCG5/ABCG8 (4), and hepatic conversion of cholesterol into bile acids followed by fecal excretion are referred to as the main routes for quantitatively important elimination of cholesterol from the body. Fecal excretion of sterols is stimulated upon whole body activation of the liver X receptor (LXR, NR1H2/3), a member of the nuclear receptor family for which oxysterols have been identified as natural ligands (5). LXR regulates expression of several genes involved in RCT and activation of LXR by synthetic agonists leads to elevated plasma HDL-cholesterol levels, increased hepatobiliary cholesterol secretion, reduced fractional intestinal cholesterol absorption and increased fecal sterol loss (6). LXR is thus considered an attractive target for therapeutic strategies aimed at stimulation of RCT, which, however, will require approaches to circumvent potential detrimental consequences of LXR activation such as induction of lipogenesis.Recent studies indicate that the classical concept of RCT may require reconsideration. Studies in apoA-I-deficient mice revealed that the magnitude of the centripetal cholesterol flux from the periphery to the liver is not related to the concentration of HDL-cholesterol or apoA-I in plasma (7). Furthermore, Abca1−/− mice that completely lack plasma HDL show unaffected rates of hepatobiliary cholesterol secretion and fecal sterol loss (8). Additionally, mice lacking both Abcg5 and Abcg8 do not show a reduction in fecal neutral sterol excretion to the extent expected on the basis of their strongly reduced hepatobiliary cholesterol secretion (9). Recent studies by Plösch et al. (6) have revealed that increased fecal neutral sterol loss upon general LXR activation cannot be attributed to the increased hepatobiliary cholesterol secretion only, suggesting a major contribution of the intestine in excretion of cholesterol. This potential role of the intestine in cholesterol removal from the body has been corroborated by Kruit et al. (10), who showed that fecal sterol loss is not affected in Mdr2−/− (Abcb4−/−) mice that have a dramatic reduction in biliary cholesterol secretion (11). Moreover, intravenously administered [3H]cholesterol could be recovered in the neutral sterol fraction of the feces in these mice and fecal excretion of neutral sterols was stimulated upon treatment with an LXR agonist (10). However, the exact quantitative contribution of the direct intestinal pathway under physiological conditions has not directly been determined so far. Very recently, intestinal perfusion studies in mice revealed that, in the presence of mixed micelles as cholesterol acceptors in the intestinal lumen, murine enterocytes indeed have a high capacity to secrete cholesterol via a specific process that is most active in the proximal part of the small intestine (12). In addition, it was shown that direct trans-intestinal cholesterol excretion (TICE) could be stimulated by a high fat diet. The existence of a non-biliary route for fecal neutral sterol excretion is further supported by very recent studies by Brown et al. (13) in mice with targeted deletion of hepatic ACAT2.The present study provides insight into the relative and absolute contributions of several cholesterol fluxes relevant to total fecal sterol loss in mice, making use of a panel of stable isotope tracers. Our results show that TICE is a major route for removal of blood-derived free cholesterol and that pharmacological LXR activation strongly stimulates this arm of the reverse cholesterol transport pathway.  相似文献   
8.
As part of a multi-endpoint systems approach to develop comprehensive methods for assessing endocrine stressors in vertebrates, differential protein profiling was used to investigate expression patterns in the brain of the amphibian model (Xenopus laevis) following in vivo exposure to a suite of T4 synthesis inhibitors. We specifically address the application of Two Dimensional Polyacrylamide Gel Electrophoresis (2D PAGE), Isobaric Tags for Relative and Absolute Quantitation (iTRAQ®) and LC–MS/MS to assess changes in relative protein expression levels. 2D PAGE and iTRAQ proved to be effective complementary techniques for distinguishing protein changes in the developing amphibian brain in response to T4 synthesis inhibition. This information served to evaluate the use of distinctive protein profiles as a potential mechanism to screen chemicals for endocrine activity in anurans. Regulatory pathways associated with proteins expressed as a result of chemical effect are reported. To our knowledge, this is also the first account of the anuran larvae brain proteome characterization using proteomic technologies. Correlation of protein changes to other cellular and organism-level responses will aid in the development of a more rapid and cost-effective, non-mammalian screening assay for thyroid axis-disrupting chemicals.  相似文献   
9.
Scavenger receptor BI (SR-BI) is a selective uptake receptor for HDL cholesterol but is also involved in the catabolism of apolipoprotein (apo)B-containing lipoproteins. However, plasma levels of apoB-containing lipoproteins increase following hepatic SR-BI overexpression, suggesting that SR-BI not solely mediates their catabolism. We therefore tested the hypothesis that hepatic SR-BI impacts on VLDL production. On day 7 following adenovirus (Ad)-mediated overexpression of SR-BI, VLDL-triglyceride and VLDL-apoB production rates were significantly increased (P < 0.001), whereas VLDL production was significantly lower in SR-BI knockout mice compared with controls (P < 0.05). In mice injected with AdSR-BI, hepatic cholesterol content increased (P < 0.001), microsomal triglyceride transfer protein activity was higher (P < 0.01) and expression of sterol-regulatory element binding protein (SREBP)2 and its target genes was decreased (P < 0.01). Conversely, in SR-BI knockout mice, microsomal triglyceride transfer protein activity was lower and expression of SREBP2 target genes was increased (P < 0.01). Finally, we demonstrate in vitro in isolated primary hepatocytes as well as in vivo that cholesterol derived from HDL and taken up via SR-BI into the liver can be resecreted within VLDL. These data indicate that hepatic SR-BI expression is linked to VLDL production, and within liver, a metabolic shunt might exist that delivers HDL cholesterol, at least in part, to a pool from which cholesterol is mobilized for VLDL production. These results might have implications for HDL-based therapies against atherosclerotic cardiovascular disease, especially with SR-BI as target.  相似文献   
10.

Background  

It is a well-known phenomenon that some patients with acute left or right hemisphere stroke show a deviation of the eyes (Prévost's sign) and head to one side. Here we investigated whether both right- and left-sided brain lesions may cause this deviation. Moreover, we studied the relationship between this phenomenon and spatial neglect. In contrast to previous studies, we determined not only the discrete presence or absence of eye deviation with the naked eye through clinical inspection, but actually measured the extent of horizontal eye-in-head and head-on-trunk deviation. In further contrast, measurements were performed early after stroke onset (1.5 days on average).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号