首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
  国内免费   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   8篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
Apple leaf spot, a disease caused by Alternaria alternata f. sp. mali and other fungal species, leads to severe defoliation and results in tremendous losses to the apple (Malus × domestica) industry in China. We previously identified three RPW8, nucleotide-binding, and leucine-rich repeat domain CCR-NB-LRR proteins (RNLs), named MdRNL1, MdRNL2, and MdRNL3, that contribute to Alternaria leaf spot (ALT1) resistance in apple. However, the role of NB-LRR proteins in resistance to fungal diseases in apple remains poorly understood. We therefore used MdRNL1/2/3 as baits to screen ALT1-inoculated leaves for interacting proteins and identified only MdRNL6 (another RNL) as an interactor of MdRNL2. Protein interaction assays demonstrated that MdRNL2 and MdRNL6 interact through their NB-ARC domains. Transient expression assays in apple indicated that complexes containing both MdRNL2 and MdRNL6 are necessary for resistance to Alternaria leaf spot. Intriguingly, the same complexes were also required to confer resistance to Glomerella leaf spot and Marssonina leaf spot in transient expression assays. Furthermore, stable transgenic apple plants with suppressed expression of MdRNL6 showed hypersensitivity to Alternaria leaf spot, Glomerella leaf spot, and Marssonina leaf spot; these effects were similar to the effects of suppressing MdRNL2 expression in transgenic apple plantlets. The identification of these novel broad-spectrum fungal resistance genes will facilitate breeding for fungal disease resistance in apple.  相似文献   
2.
1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is one of the key regulatory enzymes involved in the synthesis of ethylene. Climacteric fruit ripening is accompanied by increased ethylene production, in which ethylene biosynthesis is changed from system 1 to system 2. In apple, at least four members of the ACS gene family have been identified, two of which, MdACS1 and MdACS3a, have been studied extensively due to their specific expression in fruit tissue. However, the regulatory role of MdACS1 and MdACS3a in the ethylene biosynthesis system is unknown. Here we addressed this issue by investigating ACS expression in ripening apple fruits. Expression analysis in ‘Golden Delicious’ and ‘Red Fuji’ fruits, in combination with treatments of 1-MCP (1-methylcyclopropene, an ethylene inhibitor) and Ethephon (an ethylene releaser) has demonstrated that MdACS3a and MdACS1operate in system 1 and system 2 ethylene biosynthesis, respectively.  相似文献   
3.
4.
Myotubes expressing wild type RyR1 (WT) or RyR1 with one of three malignant hyperthermia mutations R615C, R2163C, and T4826I (MH) were exposed sequentially to 60 mm KCl in Ca(2+)-replete and Ca(2+)-free external buffers (Ca+ and Ca-, respectively) with 3 min of rest between exposures. Although the maximal peak amplitude of the Ca(2+) transients during K(+) depolarization was similar for WT and MH in both external buffers, the rate of decay of the sustained phase of the transient during K(+) depolarization (decay rate) in Ca+ was 50% slower for MH. This difference was eliminated in Ca-, and the relative decay rates were faster for both genotypes than in Ca+. The integrated Ca(2+) transient in Ca-compared with Ca+ was reduced by 50-60% for MH and 20% for WT. The decay rate was not affected by [K(+)] x [Cl(-)] product or NiCl(2) (2 mm) supplementation of Ca-. The addition of La(2+) (0.1 mm), or SKF 96365 (20 microm) to Ca+ significantly accelerated decay rates for both WT and MH, but their effect was significantly greater in MH. Nifedipine (1 microm) had no effect, suggesting that the mechanism for this difference was not a reduction in L-type Ca(2+) channel Ca(2+) current. These data strongly suggest: 1) the decay rate in skeletal myotubes is related in part to Ca(2+) entry through the ECCE channel; 2) the MH mutations enhance ECCE compared with wild type; and 3) the increased Ca(2+) entry might play a significant role in the pathophysiology of MH.  相似文献   
5.
6.
7.
Mutation T4825I in the type 1 ryanodine receptor (RYR1(T4825I/+)) confers human malignant hyperthermia susceptibility (MHS). We report a knock-in mouse line that expresses the isogenetic mutation T4826I. Heterozygous RYR1(T4826I/+) (Het) or homozygous RYR1(T4826I/T4826I) (Hom) mice are fully viable under typical rearing conditions but exhibit genotype- and sex-dependent susceptibility to environmental conditions that trigger MH. Hom mice maintain higher core temperatures than WT in the home cage, have chronically elevated myoplasmic[Ca(2+)](rest), and present muscle damage in soleus with a strong sex bias. Mice subjected to heat stress in an enclosed 37°C chamber fail to trigger MH regardless of genotype, whereas heat stress at 41°C invariably triggers fulminant MH in Hom, but not Het, mice within 20 min. WT and Het female mice fail to maintain euthermic body temperature when placed atop a bed whose surface is 37°C during halothane anesthesia (1.75%) and have no hyperthermic response, whereas 100% Hom mice of either sex and 17% of the Het males develop fulminant MH. WT mice placed on a 41°C bed maintain body temperature while being administered halothane, and 40% of the Het females and 100% of the Het males develop fulminant MH within 40 min. Myopathic alterations in soleus were apparent by 12 mo, including abnormally distributed and enlarged mitochondria, deeply infolded sarcolemma, and frequent Z-line streaming regions, which were more severe in males. These data demonstrate that an MHS mutation within the S4-S5 cytoplasmic linker of RYR1 confers genotype- and sex-dependent susceptibility to pharmacological and environmental stressors that trigger fulminant MH and promote myopathy.  相似文献   
8.
Malignant hyperthermia susceptibility (MHS) is primarily conferred by mutations within ryanodine receptor type 1 (RYR1). Here we address how the MHS mutation T4826I within the S4-S5 linker influences excitation-contraction coupling and resting myoplasmic Ca2+ concentration ([Ca2+]rest) in flexor digitorum brevis (FDB) and vastus lateralis prepared from heterozygous (Het) and homozygous (Hom) T4826I-RYR1 knock-in mice (Yuen, B. T., Boncompagni, S., Feng, W., Yang, T., Lopez, J. R., Matthaei, K. I., Goth, S. R., Protasi, F., Franzini-Armstrong, C., Allen, P. D., and Pessah, I. N. (2011) FASEB J. doi:22131268). FDB responses to electrical stimuli and acute halothane (0.1%, v/v) exposure showed a rank order of Hom ≫ Het ≫ WT. Release of Ca2+ from the sarcoplasmic reticulum and Ca2+ entry contributed to halothane-triggered increases in [Ca2+]rest in Hom FDBs and elicited pronounced Ca2+ oscillations in ∼30% of FDBs tested. Genotype contributed significantly elevated [Ca2+]rest (Hom > Het > WT) measured in vivo using ion-selective microelectrodes. Het and Hom oxygen consumption rates measured in intact myotubes using the Seahorse Bioscience (Billerica, MA) flux analyzer and mitochondrial content measured with MitoTracker were lower than WT, whereas total cellular calpain activity was higher than WT. Muscle membranes did not differ in RYR1 expression nor in Ser2844 phosphorylation among the genotypes. Single channel analysis showed highly divergent gating behavior with Hom and WT favoring open and closed states, respectively, whereas Het exhibited heterogeneous gating behaviors. [3H]Ryanodine binding analysis revealed a gene dose influence on binding density and regulation by Ca2+, Mg2+, and temperature. Pronounced abnormalities inherent in T4826I-RYR1 channels confer MHS and promote basal disturbances of excitation-contraction coupling, [Ca2+]rest, and oxygen consumption rates. Considering that both Het and Hom T4826I-RYR1 mice are viable, the remarkable isolated single channel dysfunction mediated through this mutation in S4-S5 cytoplasmic linker must be highly regulated in vivo.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号