首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   4篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
1.
Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi .  相似文献   
2.
Experimental samples are valuable and can represent a significant investment in time and resources. It is highly desirable at times to obtain as much information as possible from a single sample. This is especially relevant for systems biology approaches in which several ‘omics platforms are studied simultaneously. Unfortunately, each platform has a particular extraction methodology which increases sample number and sample volume requirements when multiple ‘omics are analyzed. We evaluated the integration of a yeast extraction method; specifically we explored whether fractions from a single metabolite extraction could be apportioned to multiple downstream ‘omics analytical platforms. In addition, we examined how variations to a chloroform/methanol yeast metabolite extraction regime influence metabolite recoveries. We show that protein suitable for proteomic analysis can be recovered from a metabolite extraction and that recovery of lipids, while reproducible, are not wholly quantitative. Higher quenching solution temperatures (?30 °C) can be used without significant leakage of intracellular metabolites when lower fermentation temperatures (20 °C) are employed. However, extended residence time in quenching solution, in combination with vigorous washing of quenched cell pellets, leads to extensive leakage of intracellular metabolites. Finally, there is minimal difference in metabolite amounts obtained when metabolite extractions are performed at 4 °C compared to extractions at ?20 °C. The evaluated extraction method delivers material suitable for metabolomic and proteomic analyses from the same sample preparation.  相似文献   
3.
Our present investigation describes the regioselective enzymatic acylation of two series of acylated derivatives of phloridzin and isoquercitrin with six different long chain saturated, mono- and poly-unsaturated fatty acids. The biocatalytic synthesis was optimized to achieve 81–98% yields, using immobilized lipase B, from Candida antarctica (Novozym 435®), in acetone at 45 °C. The synthesized esters have been analyzed by 1H NMR, 13C NMR spectroscopy and evaluated for their antioxidant capacity and tyrosinase inhibition, using in vitro assays. Among all the phloridzin and isoquercitrin derivatives, the greatest potential for inhibition of tyrosinase activity (p ?0.05) was exhibited by the α-linolenic acid ester of isoquercitrin.  相似文献   
4.

Phragmites australis (Cav.) Trin. ex Steudel subspecies australis is one of the worst plant invaders in wetlands of North America. Remote sensing is the most cost-effective method to track its spread given its widespread distribution and rapid colonization rate. We hypothesize that the morphological and/or physiological features associated with different phenological states of Phragmites can influence their reflectance signal and thus affect mapping accuracies. We tested this hypothesis by comparing classification accuracies of cloud-free images acquired by Landsat 7, Landsat 8, and Sentinel 2 at roughly monthly intervals over a calendar year for two wetlands in southern Ontario. We used the Support Vector Machines classification and employed field observations and image acquired from unmanned aerial vehicle (8 cm) to perform accuracy assessments. The highest Phragmites producer’s, user’s, and overall accuracy (96.00, 91.11, and 88.56% respectively) were provided by images acquired in late summer and fall period. During this period, green, Near Infrared, and Short-Wave Infrared bands generated more unique reflectance signals for Phragmites. Both Normalized Difference Vegetation Index and Normalized Difference Water Index showed significant difference between Phragmites and the most confused classes (cattail; Typha latifolia L., and meadow marsh) during the late summer and fall period. Since meadow marsh separated out best from Phragmites and cattail in the February image, we used it to mask the meadow marsh in the July image to reduce confusion. The unique reflectance signal of Phragmites in late summer and fall is likely due to prolonged greenness of Phragmites when compared to other wetland vegetation, large, distinct inflorescence, and the water content of Phragmites during this period.

  相似文献   
5.
The navel orangeworm Amyelois transitella (Walker) (Lepidoptera: Pyralidae) is a serious pest of many tree crops in California orchards, including almonds, pistachios, walnuts and figs. To understand the molecular mechanisms underlying detoxification of phytochemicals, insecticides and mycotoxins by this species, full-length CYP6AB11 cDNA was isolated from larval midguts using RACE PCR. Phylogenetic analysis of this insect cytochrome P450 monooxygenase established its evolutionary relationship to a P450 that selectively metabolizes imperatorin (a linear furanocoumarin) and myristicin (a natural methylenedioxyphenyl compound) in another lepidopteran species. Metabolic assays conducted with baculovirus-expressed P450 protein, P450 reductase and cytochrome b5 on 16 compounds, including phytochemicals, mycotoxins, and synthetic pesticides, indicated that CYP6AB11 efficiently metabolizes imperatorin (0.88 pmol/min/pmol P450) and slowly metabolizes piperonyl butoxide (0.11 pmol/min/pmol P450). LC-MS analysis indicated that the imperatorin metabolite is an epoxide generated by oxidation of the double bond in its extended isoprenyl side chain. Predictive structures for CYP6AB11 suggested that its catalytic site contains a doughnut-like constriction over the heme that excludes aromatic rings on substrates and allows only their extended side chains to access the catalytic site. CYP6AB11 can also metabolize the principal insecticide synergist piperonyl butoxide (PBO), a synthetic methylenedioxyphenyl compound, albeit slowly, which raises the possibility that resistance may evolve in this species after exposure to synergists under field conditions.  相似文献   
6.
Plant P450 monooxygenases represent the largest family of plant proteins and the largest collection of P450s available for comparative studies and biotechnological applications. They have been shown to catalyze a diverse array of difficult chemical reactions and have demonstrated potential to be used in pharmacological, agronomic and phytoremediative applications. Central to our use of these catalytically competent enzymes is the need to understand their interactions with substrates. Because most characterized plant P450s are membrane-bound proteins that are resistant to standard X-ray and NMR structure determinations, homology modeling represents a reliable and relatively rapid alternative method for analyzing structure-function relationships and predicting substrates for many P450s that are only now being characterized. These methods, which are being widely used in mammalian P450 structure-function studies, can allow plant biologists to define critical residues interacting with substrates and, in a directed fashion, alter the reactivities of individual monooxygenases. The homology modelings that have been done on a limited number of plant P450s and the site-directed mutations that validate them indicate that current modeling and substrate docking procedures are capable of providing structural explanations for sequence variants as well as for predicting functional characteristics of undefined P450s.  相似文献   
7.
8.
The organic produce industry is gaining popularity with consumers because of the perception for healthier foods and the environmental benefits of this agricultural practice. Common amendments in organic agriculture include compost and compost tea, the latter being a relatively new product in North America. The main objective of this study was to assess the effectiveness of ruminant and municipal solid waste compost and compost teas made from these composts on selected soil, leaf and fruit parameters of raspberries. Generally, foliar compost tea application was as effective as compost addition in raspberry production. Concentrations of K in leaf and fruits were significantly lower (p?=?0.05) in compost tea treated raspberries. Furthermore, the compost tea increased leaf Na compared to compost amendments which suggested that raspberries preferentially take up Na via foliar applications compared to root Na applications. The yield, total antioxidant capacity of fruit, and vitamin C content of fruit were not affected by treatment but differed greatly among years. Precipitation also varied greatly among years as did soil nutrient concentrations and may have influenced yield, total antioxidant capacity, and vitamin C content.  相似文献   
9.
Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., 13C–13C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (−0.75) commensurate to the control (−0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.  相似文献   
10.
Despite extensive primary sequence diversity, crystal structures of several bacterial cytochrome P450 monooxygenases (P450s) and a single eukaryotic P450 indicate that these enzymes share a structural core of alpha-helices and beta-sheets and vary in the loop regions contacting individual substrates. To determine the extent to which individual structural features are conserved among divergent P450s existing in a single biosynthetic pathway, we have modeled the structures of four highly divergent P450s (CYP73A5, CYP84A1, CYP75B1, CYP98A3) in the Arabidopsis phenylpropanoid pathway synthesizing lignins, flavonoids and anthocyanins. Analysis of these models has indicated that, despite primary sequence identities as low as 13%, the structural cores and several loop regions of these P450s are highly conserved. Substrate docking indicated that all four enzymes employ a common strategy to identify their substrates in that their cinnamate-derived substrates align along helix I with their aromatic ring positioned towards the C-terminus of this helix and their aliphatic tails positioned towards the N-terminus. Further similarity was observed in the way the substrates contact the consensus P450 substrate recognition sites (SRS). Residues predicted to contact the aromatic ring region exist in SRS5, SRS6 and the C-terminal portion of SRS4 and residues contacting the distal end of each substrate exist in SRS1, SRS2 and the N-terminal portion of SRS4. Alignments of the regions contacting the aromatic ring region indicate that SRS4, SRS5 and SRS6 share higher degrees of sequence conservation than found in SRS1, SRS2 or the full-length protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号