首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   11篇
  137篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   9篇
  2013年   4篇
  2012年   16篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   15篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1969年   1篇
  1968年   1篇
  1936年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
1.
2.
3.
The patchoulol synthase (PTS) from Pogostemon cablin is a versatile sesquiterpene synthase and produces more than 20 valuable sesquiterpenes by conversion of the natural substrate farnesyl pyrophosphate (FPP). PTS has the potential to be used as a biocatalyst for the production of valuable sesquiterpenes such as (−)-patchoulol. The objective of the present study is to develop an efficient biotransformation and to characterize the biocatalytic mechanism of the PTS in detail. For this purpose, soluble PTS was prepared using an optimized cultivation protocol and continuous downstream process with a purity of 98%. The PTS biotransformation was then optimized regarding buffer composition, pH-value, and temperature for biotransformation as well as functional and kinetic properties to improve productivity. For the bioconversion of FPP, the highest enzyme activity was reached with the 2-(N-morphlino)ethanesulfonic acid (MES) buffer containing 10% (v/v) glycerol and 10 mM MgCl2 at pH 6.4 and 34°C. The PTS showed an unusual substrate inhibition for sesquiterpene synthases indicating an intermediate sesquiterpene formed in the active center. Deuteration experiments were used to gain further insights into the biocatalytic mechanism described in literature. Thus it could be shown that a second substrate binding site must be responsible for substrate inhibition and that further protonation and deprotonation steps are involved in the reaction mechanism.  相似文献   
4.
International Journal of Primatology - Interspecific hybridization allows the introgression or movement of alleles from one genome to another. While some genomic regions freely exchange alleles...  相似文献   
5.
The utilization of the fuel oxygenate methyl tert-butyl ether (MTBE) and related compounds by microorganisms was investigated in a mainly theoretical study based on the YATP concept. Experiments were conducted to derive realistic maintenance coefficients and Ks values needed to calculate substrate fluxes available for biomass production. Aerobic substrate conversion and biomass synthesis were calculated for different putative pathways. The results suggest that MTBE is an effective heterotrophic substrate that can sustain growth yields of up to 0.87 g g−1, which contradicts previous calculation results (N. Fortin et al., Environ. Microbiol. 3:407-416, 2001). Sufficient energy equivalents were generated in several of the potential assimilatory routes to incorporate carbon into biomass without the necessity to dissimilate additional substrate, efficient energy transduction provided. However, when a growth-related kinetic model was included, the limits of productive degradation became obvious. Depending on the maintenance coefficient ms and its associated biomass decay term b, growth-associated carbon conversion became strongly dependent on substrate fluxes. Due to slow degradation kinetics, the calculations predicted relatively high threshold concentrations, Smin, below which growth would not further be supported. Smin strongly depended on the maximum growth rate μmax, and b and was directly correlated with the half maximum rate-associated substrate concentration Ks, meaning that any effect impacting this parameter would also change Smin. The primary metabolic step, catalyzing the cleavage of the ether bond in MTBE, is likely to control the substrate flux in various strains. In addition, deficits in oxygen as an external factor and in reduction equivalents as a cellular variable in this reaction should further increase Ks and Smin for MTBE.  相似文献   
6.
7.
Primates are intensely social and exhibit extreme variation in social structure, making them particularly well suited for uncovering evolutionary connections between sociality and vocal complexity. Although comparative studies find a correlation between social and vocal complexity, the function of large vocal repertoires in more complex societies remains unclear. We compared the vocal complexity found in primates to both mammals in general and human language in particular and found that non-human primates are not unusual in the complexity of their vocal repertoires. To better understand the function of vocal complexity within primates, we compared two closely related primates (chacma baboons and geladas) that differ in their ecology and social structures. A key difference is that gelada males form long-term bonds with the 2-12 females in their harem-like reproductive unit, while chacma males primarily form temporary consortships with females. We identified homologous and non-homologous calls and related the use of the derived non-homologous calls to specific social situations. We found that the socially complex (but ecologically simple) geladas have larger vocal repertoires. Derived vocalizations of geladas were primarily used by leader males in affiliative interactions with 'their' females. The derived calls were frequently used following fights within the unit suggesting that maintaining cross-sex bonds within a reproductive unit contributed to this instance of evolved vocal complexity. Thus, our comparison highlights the utility of using closely related species to better understand the function of vocal complexity.  相似文献   
8.
During prolonged, low intensity exercise, the type of substrate utilized varies with time. If 5' AMP-activated protein kinase (AMPK) regulates muscle metabolism during exercise, signaling through AMPK would be expected to change in concordance with changes in substrate utilization. Six healthy, young males cycled (approximately 45% VO(2peak)) until exhaustion (approximately 3.5h). During exercise, leg glucose uptake and rate of glycogenolysis gradually decreased whereas free fatty acid uptake gradually increased. In the thigh muscle, the alpha AMPK subunits became progressively more phosphorylated on Thr(172) during exercise eliciting a parallel increase in alpha2 but not alpha1 AMPK activity. In contrast, after 1h of exercise, Ser(221) phosphorylation of acetyl-CoA carboxylase-beta (ACCbeta) peaked at 1h of exercise and returned to resting levels at exhaustion. Protein expression of alpha2 AMPK, alpha1 AMPK or ACCbeta did not change with time. These data suggest that AMPK signaling is not a key regulatory system of muscle substrate combustion during prolonged exercise and that marked activation of AMPK via phosphorylation is not sufficient to maintain an elevated ACCbeta Ser(221) phosphorylation during prolonged exercise.  相似文献   
9.
Contractions of uterine smooth muscle cells consist of a chain of physiological processes. These contractions provide the required force to expel the fetus from the uterus. The inclusion of these physiological processes is, therefore, imperative when studying uterine contractions. In this study, an electro-chemo-mechanical model to replicate the excitation, activation, and contraction of uterine smooth muscle cells is developed. The presented modeling strategy enables efficient integration of knowledge about physiological processes at the cellular level to the organ level. The model is implemented in a three-dimensional finite element setting to simulate uterus contraction during labor in response to electrical discharges generated by pacemaker cells and propagated within the myometrium via gap junctions. Important clinical factors, such as uterine electrical activity and intrauterine pressure, are predicted using this simulation. The predictions are in agreement with clinically measured data reported in the literature. A parameter study is also carried out to investigate the impact of physiologically related parameters on the uterine contractility.  相似文献   
10.
The interferon-induced protein kinase DAI, the double-stranded RNA (dsRNA)-activated inhibitor of translation, plays a key role in regulating protein synthesis in higher cells. Once activated, in a process that involves autophosphorylation, it phosphorylates the initiation factor eIF-2, leading to inhibition of polypeptide chain initiation. The activity of DAI is controlled by RNA regulators, including dsRNA activators and highly structured single-stranded RNAs which block activation by dsRNA. To elucidate the mechanism of activation, we studied the interaction of DAI with RNA duplexes of discrete sizes. Molecules shorter than 30 bp fail to bind stably and do not activate the enzyme, but at high concentrations they prevent activation by long dsRNA. Molecules longer than 30 bp bind and activate the enzyme, with an efficiency that increases with increasing chain length, reaching a maximum at about 85 bp. These dsRNAs fail to activate at high concentrations and also prevent activation by long dsRNA. Analysis of complexes between dsRNA and DAI suggests that at maximal packing the enzyme interacts with as little as a single helical turn of dsRNA (11 bp) but under conditions that allow activation the binding site protects about 80 bp of duplex. When the RNA-binding site is fully occupied with an RNA activator, the complex appears to undergo a conformational change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号