首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1980年   1篇
排序方式: 共有18条查询结果,搜索用时 781 毫秒
1.
Cyclo (His-Pro): a selective inhibitor of rat prolactin secretion in vitro   总被引:1,自引:0,他引:1  
Cyclo (His-Pro) (10 ng/ml), inhibits KCl (59 mM) or thyrotropin-releasing hormone (10 ng/ml) stimulated, but not basal, release of prolactin from rat hemipituitaries in vitro. However, cyclo (His-Pro) has no effect on the basal or stimulated release of thyrotropin and growth hormone. Cyclo (His-Pro) does not inhibit the binding of thyrotropin-releasing hormone to pituitary membrane suggesting that cyclo (His-Pro) inhibition of prolactin release is not mediated via the pituitary TRH-receptor.  相似文献   
2.
Platelet-derived growth factor (PDGF) exerts neurotrophic and neuromodulatory effects on the CNS. To determine the permeability of the blood-brain barrier (BBB) to PDGF, we examined the blood-to-brain influx of radioactively labeled PDGF isoforms (PDGF-AA and PDGF-BB) by multiple-time regression analysis after intravenous (i.v.) injection and by in-situ perfusion, and also determined the physicochemical characteristics which affect their permeation across the BBB, including lipophilicity (measured by octanol:buffer partition coefficient), hydrogen bonding (measured by differences in octanol : buffer and isooctane : buffer partition coefficients), serum protein binding (measured by capillary electrophoresis), and stability of PDGF in blood 10 min after i.v. injection (measured by HPLC). After i.v. bolus injection, neither 125I-PDGF-AA nor 125I-PDGF-BB crossed the BBB, their influx rates being similar to that of the vascular marker 99mTc-albumin. 125I-PDGF-AA degraded significantly faster in blood than 125I-PDGF-BB. PDGF-BB, however, was completely bound to a large protein in serum whereas PDGF-AA showed no binding. Thus, degradation might explain the poor blood-to-brain influx of PDGF-AA, whereas protein binding could explain the poor influx of circulating PDGF-BB. Despite their lack of permeation in the intact mouse, both 125I-PDGF-AA and 125I-PDGF-BB entered the brain by perfusion in blood-free buffer, and the significantly faster rate of 125I-PDGF-AA than 125I-PDGF-BB may be explained by the lower hydrogen bonding potential of 125I-PDGF-AA. Thus, the lack of significant distribution of PDGF from blood to brain is not because of the intrinsic barrier function of the BBB but probably because of degradation and protein binding. Information from these studies could be useful in the design of analogues for delivery of PDGF as a therapeutic agent.  相似文献   
3.
Kastin AJ  Akerstrom V 《Peptides》2000,21(5):679-682
Food deprivation and adrenalectomy are associated with low concentrations of leptin in blood and the absence of obesity. Because leptin is known to cross the blood-brain barrier (BBB) by a saturable transport system, we examined whether fasting and adrenalectomy (ADX) also act at the BBB. Multiple-time regression analysis showed that fasting, but not ADX, significantly decreased the entry of leptin into mouse brain. After 3 days of food deprivation, the influx of leptin became indistinguishable from that of the vascular control (albumin); 5 h of refeeding significantly reversed this reduced rate of influx. Thus, the results indicate that the BBB provides a dynamic site for the regulation of physiological processes involving leptin.  相似文献   
4.
Melanin-concentrating hormone (MCH), found both peripherally and centrally, is involved in food ingestion. Although its expression in brain is increased by fasting, it is not known whether it crosses the blood-brain barrier (BBB). Use of the sensitive method of multiple-time regression analysis has shown that almost all of the peptides and polypeptides tested cross the BBB at a rate faster than the vascular marker albumin. With this same method, however, we found that the 19-amino acid 125I-Phe13,Tyr19-MCH did not cross faster than 99mTc-albumin. Several mechanisms were excluded as possible explanations for the slow rate of influx. These included degradation, association with capillary endothelial cells, and transport from brain to blood. When Phe13,Tyr19-MCH was perfused in blood-free buffer, however, it entered the brain significantly faster than albumin. This suggested protein binding as an explanation for the slow rate of influx when the MCH was administered in blood. Protein binding was confirmed by capillary zone electrophoresis, which showed that almost all of the Phe13,Tyr19-MCH added to blood migrated with a large-molecular-weight substance. Sodium dodecyl sulfate-capillary gel electrophoresis of Phe13,Tyr19-MCH in buffer additionally showed that the MCH aggregated as a trimer, a factor not preventing its influx by blood-free perfusion. Thus, the results show that blood-borne Phe13,Tyr19-MCH does not significantly cross the BBB, probably because of its binding to serum proteins.  相似文献   
5.
Proteins of the neuregulin (NRG) family play important regulatory roles in neuronal survival and synaptic activity. NRG-1-beta1 has particular potential as a therapeutic agent because it enhances myelination of neurites in spinal cord explants. In this study, we determined the permeation of NRG-1-beta1 across the blood-brain and blood-spinal cord barriers (BBB and BSCB respectively). Intact radioactively labeled NRG-1-beta1 had a saturable and relatively rapid influx rate from blood to the CNS in mice. Capillary depletion studies showed that NRG-1-beta1 entered the parenchyma of the brain and spinal cord rather than being trapped in the capillaries that compose the BBB. The possible mechanism of receptor-mediated transport was shown by the ability of antibodies to erbB3 and erbB4 receptors to inhibit the influx. Lipophilicity, less important for such saturable transport mechanisms, was measured by the octanol : buffer partition coefficient and found to be low. The results indicate that NRG-1-beta1 enters spinal cord and brain by a saturable receptor-mediated mechanism, which provides the opportunity for possible therapeutic manipulation at the BBB level.  相似文献   
6.
Kastin AJ  Pan W  Akerstrom V  Hackler L  Wang C  Kotz CM 《Peptides》2002,23(12):2189-2196
There is need for a new approach to the suppression of feeding. Here, we show that two of the most potent endogenous satiety peptides interact in a novel way to cross the blood–brain barrier (BBB) and to suppress food intake. Combined peripheral administration of leptin and urocortin (UCN) significantly decreased food intake, whereas neither one showed an effect when given alone in the same doses. We further provide a mechanism whereby this novel cooperativity can occur by demonstrating that UCN, which by itself does not cross the BBB, can readily enter the brain by associating with leptin. Such a novel interaction between two peptides at the BBB opens new approaches for general study of the dynamic regulatory role of the BBB in brain–body communication as well as the specific study of obesity.  相似文献   
7.
Kastin AJ  Akerstrom V  Pan W 《Peptides》2000,21(12):1811-1817
There are several transport systems for peptides and polypeptides at the blood-brain barrier (BBB) which facilitate the passage of bioactive substances from blood to brain or from brain to blood. Nonetheless, it would be a novel concept for one peptide or polypeptide to activate the transport of another peptide with a similar function but unrelated structure. In this study, we report the first observation of such a phenomenon: activation of a urocortin transport system at the BBB by leptin. Urocortin, a corticotropin-releasing factor (CRF)-related neuropeptide, is a more potent suppressor of food intake than leptin or CRF when injected peripherally. Radiolabeled urocortin (125I-urocortin) was used for these in vivo studies in mice; it remained stable and intact during the experimental period. Unlike CRF, urocortin was not saturably transported out of the brain. There was no substantial entry of 125I-urocortin into brain as determined by sensitive multiple-time regression analysis after iv bolus injection. Addition of leptin, however, caused a dose-related increase in the influx of 125I-urocortin and greatly facilitated its entry into brain parenchyma; this effect disappeared at higher doses of leptin. Moreover, in the presence of an activating dose of leptin, the entry of 125I-urocortin into brain was saturable. The results indicate that the presence of leptin contributes to the potent satiety effects of urocortin after peripheral administration. Thus, the action of leptin in the periphery extends beyond its direct passage across the BBB and involves acute modulation of an inert transport system. We believe that these findings have broad physiological implications and indicate a unique function of the BBB as a regulatory interface.  相似文献   
8.
An outbreak of occupational hot tub lung necessitated quantitative analysis of mycobacteria in water samples. We combined procedures for cultivation of mycobacteria in urine and quantitative analyses of dialysis water. Whirlpool spa water samples were analyzed showing promising results. In conclusion, quantitative mycobacterial culture of water is possible by adapting methods routinely used in clinical laboratories.  相似文献   
9.
Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4.5, and 6 h in response to exercise (n = 8) compared with preexercise samples and compared with the resting control group (n = 7, P = 0.001). Visfatin mRNA expression in skeletal muscle was not influenced by exercise. The exercise-induced increase in adipose tissue visfatin was, however, not accompanied by elevated levels of plasma visfatin. Recombinant human IL-6 infusion to mimic the exercise-induced IL-6 response (n = 6) had no effect on visfatin mRNA expression in adipose tissue compared with the effect of placebo infusion (n = 6). The finding that exercise enhances subcutaneous adipose tissue visfatin mRNA expression suggests that visfatin has a local metabolic role in the recovery period following exercise.  相似文献   
10.
The peptide urocortin is a member of the corticotropin-releasing factor (CRF) family and a potent satiety signal to the brain. Urocortin in blood does not reach the brain significantly by itself, but its permeation across the blood-brain barrier (BBB) can be enhanced by leptin. How leptin facilitates the influx of urocortin has not been elucidated. In this study, we tested the hypothesis that leptin activates receptor-mediated endocytosis of urocortin. We measured the kinetics of permeation of radioactively labeled urocortin across the mouse BBB and determined the specific effects of leptin and receptor antibodies. The results show that the influx transfer constant of urocortin was enhanced in the presence of leptin and mediated by CRF-2beta, the specific receptor for urocortin. To determine the specificity of this modulation, the effect of leptin was compared with that of TNFalpha. Both TNFalpha and leptin independently facilitated receptor-mediated transport of urocortin across the BBB. Even though TNFalpha and leptin have similar effects on urocortin transport, leptin did not significantly affect the influx of TNFalpha across the BBB. The results indicate that permeation of ingestive peptides and cytokines across the BBB can be acutely modulated, consistent with a role of BBB in regulating feeding behavior. Thus, sites of action of leptin, urocortin, and TNFalpha exist not only in the brain but also at the BBB where they each control the flow of other ingestive signals to CNS targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号