首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   24篇
  2019年   4篇
  2018年   3篇
  2017年   9篇
  2016年   11篇
  2015年   14篇
  2014年   13篇
  2013年   8篇
  2012年   12篇
  2011年   9篇
  2010年   7篇
  2009年   8篇
  2008年   4篇
  2007年   4篇
  2006年   7篇
  2005年   8篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1988年   2篇
  1987年   6篇
  1986年   2篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   4篇
  1973年   3篇
  1945年   3篇
  1944年   1篇
  1943年   1篇
  1942年   1篇
  1941年   4篇
  1939年   3篇
  1938年   4篇
  1937年   2篇
  1935年   1篇
  1934年   4篇
  1933年   1篇
  1932年   3篇
  1929年   1篇
  1915年   1篇
排序方式: 共有246条查询结果,搜索用时 15 毫秒
1.
Ultraviolet-induced restriction alleviation is an SOS function which partially relieves the K-12-specific DNA restriction in Escherichia coli. Restriction alleviation is determined by observing elevated survival of unmodified phage lambda in cells irradiated with ultraviolet prior to infection. We demonstrate that restriction of lambda is also relieved when log-phase cells are irradiated as late as 50 min after adsorption of lambda. At this time more than 60% of the lambda DNA is already released as acid-soluble material from the cells. Experiments involving reextraction of lambda DNA from infected cells and a mild detergent treatment removing absorbed phages from the cellular surface showed that only a small specific fraction of all lambda infections is destined to escape restriction due to restriction alleviation. This fraction (10-20%) has a retarded mode of DNA injection (60 min or longer) after adsorption which allows the expression of the restriction alleviation function before the phage DNA is exposed to restriction endonucleases. This behaviour of a fraction of lambda phages explains why the SOS function restriction alleviation could initially be discovered. We show that the retarded mode of DNA injection is not required for another SOS function acting on lambda DNA, the increased repair of ultraviolet-irradiated DNA (Weigle reactivation).  相似文献   
2.
An Ustilago maydis ergosterol biosynthesis mutant (A14) which is partially blocked in sterol 14alpha-demethylase (P45014DM) activity is described. This mutant accumulated the abnormal 14alpha-methyl sterols, eburicol, 14alpha-methylfecosterol, and obtusifoliol, along with significant amounts of ergosterol. Although the A14 mutant grew nearly as well as the wild type, it was impaired in cell extension growth, which indicated a dysfunction in apical cell wall synthesis. The mutant was also found to be hypersensitive to the azole fungicides penconazole and tebuconazole.  相似文献   
3.
4.
Summary In UV-irradiated cells of Escherichia coli K-12 a partial release of the restriction of non-modified phage is observed when the cells are recA + lexA +. We show here that the induction of this restriction allevation (RA) also depends on the recBC enzyme and that the expression of RA requires protein synthesis. Maximum expression was reached within 60 to 90 min after irradiation. Experiments are presented which show that upon UV-irradiation a signal is created which triggers the development of RA when protein synthesis is allowed. This signal decayed with a half-life of only a few minutes in cells treated with chloramphenicol. The decay kinetics were similar in uvr + and uvrA mutants. RA appeared to be specific for EcoK insofar as no allevation of restriction by EcoRI, EcoRII and EcoP1 occurred. During maximum expression of RA no gross reduction of the activities of the recBC enzyme (exonuclease V) and the restriction endonuclease EcoK was observed and no new DNA modifying activity appeared in the cells. Since, in fully expressed cells, up to 75% of the infecting DNA was converted to acid-soluble material within 20 min after infection we suggest that only a small specific fraction of infections may undergo RA.  相似文献   
5.
Hexazonium pararosaniline is a valuable reagent that has been used in enzyme activity histochemistry for 50 years. It is an aqueous solution containing the tris-diazonium ion derived from pararosaniline, an aminotriarylmethane dye, and it contains an excess of nitrous acid that was not consumed in the diazotization reaction. Other investigators have found that immersion for 2 min in an acidic (pH 3.5) 0.0015 M hexazonium pararosaniline solution can protect cryostat sections of unfixed animal tissues from the deleterious effects of aqueous reagents such as buffered solutions used in immunohistochemistry, while preserving specific affinities for antibodies. In the present investigation hexazonium pararosaniline protected lymphoid tissue and striated muscle against the damaging effects of water or saline. The same protection was conferred on unfixed sections treated with dilute nitrous or hydrochloric acid in concentrations similar to those in hexazonium pararosaniline solutions. Model tissues (solutions, gels or films containing gelatin and/or bovine albumin) responded predictably to well known cross-linking (formaldehyde) or coagulant (mercuric chloride) fixatives. Hexazonium pararosaniline solutions prevented the dissolution of protein gels in water only after 9 or more days of contact, during which time considerable swelling occurred. It is concluded that there is no evidence for a “fixative” action of hexazonium pararosaniline. The protective effect on frozen sections of unfixed tissue is attributable probably to the low pH of the solution.  相似文献   
6.
Water hyacinth Eichhornia crassipes is considered the most damaging aquatic weed in the world. However, few studies have quantified the impact of this weed economically and ecologically, and even fewer studies have quantified the benefits of its control. This paper focuses on water loss saving as the benefit derived from biological control of this plant between 1990 and 2013 at New Year’s Dam, Alicedale, Eastern Cape, South Africa. Estimates of water loss due to evapotranspiration from water hyacinth vary significantly; therefore, the study used three different rates, high, medium and low. A conservative raw agriculture value of R 0.26 per m3 was used to calculate the benefits derived by the water saved. The present benefit and cost values were determined using 10% and 5% discount rates. The benefit/cost ratio at the low evapotranspiration rate was less than one, implying that biological control was not economically viable but, at the higher evapotranspiration rates, the return justified the costs of biological control. However, at the marginal value product of water, the inclusion of the costs of damage to infrastructure, or the adverse effects of water hyacinth on biodiversity, would justify the use of biological control, even at the low transpiration rate.  相似文献   
7.
We report on a novel transgenic mouse model expressing human full‐length Tau with the Tau mutation A152T (hTauAT), a risk factor for FTD‐spectrum disorders including PSP and CBD. Brain neurons reveal pathological Tau conformation, hyperphosphorylation, mis‐sorting, aggregation, neuronal degeneration, and progressive loss, most prominently in area CA3 of the hippocampus. The mossy fiber pathway shows enhanced basal synaptic transmission without changes in short‐ or long‐term plasticity. In organotypic hippocampal slices, extracellular glutamate increases early above control levels, followed by a rise in neurotoxicity. These changes are normalized by inhibiting neurotransmitter release or by blocking voltage‐gated sodium channels. CA3 neurons show elevated intracellular calcium during rest and after activity induction which is sensitive to NR2B antagonizing drugs, demonstrating a pivotal role of extrasynaptic NMDA receptors. Slices show pronounced epileptiform activity and axonal sprouting of mossy fibers. Excitotoxic neuronal death is ameliorated by ceftriaxone, which stimulates astrocytic glutamate uptake via the transporter EAAT2/GLT1. In summary, hTauAT causes excitotoxicity mediated by NR2B‐containing NMDA receptors due to enhanced extracellular glutamate.  相似文献   
8.
The control of Spodoptera frugiperda is based on synthetic insecticides, so some alternatives are the use of entomopathogenic fungi (EF) and neem extract. The objective of the study was to evaluate in vitro effectiveness of native EF and neem extracts on S. frugiperda larvae. Six EF were identified by DNA sequencing of ITS regions from three EF (Fusarium solani, Metarrhizium robertsii, Nigrospora spherica and Penicillium citrinum). They were evaluated in concentrations of 1 × 10⁸ spores/ mL. In addition, a second bioassay was carried out evaluating only F. solani, M. robertsii and N. sphaerica and the addition of vegetable oil. On the other hand, extraction of secondary metabolites from neem seed (Azadirachta indica) was carried out by performing, mass (g) and solvent volume (mL ethanol and water) combinations, which were subjected to microwaves and ultrasound. Subsequently, these extracts were evaluated in concentrations of 3%, 4% and 5%. A survival analysis was performed for each of the bioassays. With respect to the results of the first bioassay, F. solani obtained a probability of survival of 0.476 on the seventh day, while in the second bioassay, M. robertsii obtained 0.488 survival probability. This suggests that the expected percentage of larvae that stay alive on the sixth day is 48.8%. However, in the evaluation of the neem extract the combination 1:12/70% to 4% caused 84% mortality of larvae. The use of native HE and neem extracts has potential for the control of S. frugiperda.  相似文献   
9.
10.
The RecBCD enzyme has a powerful duplex DNA exonuclease activity in vivo. We found that this activity decreased strongly when cells were irradiated with UV light (135 J/m2). The activity decrease was seen by an increase in survival of phage T4 2 of about 200-fold (phage T4 2 has defective duplex DNA end-protecting gene 2 protein). The activity decrease depended on excision repair proficiency of the cells and a postirradiation incubation. During this time, chromosome fragmentation occurred as demonstrated by pulsed-field gel electrophoresis. In accord with previous observations, it was concluded that the RecBCD enzyme is silenced during interaction with duplex DNA fragments containing Chi nucleotide sequences. The silencing was suppressed by induction or permanent derepression of the SOS system or by the overproduction of single-strand DNA binding protein (from a plasmid with ssb+) which is known to inhibit degradation of chromosomal DNA by cellular DNases. Further, mutations in xonA, recJ, and sbcCD, particularly in the recJ sbcCD and xonA recJ sbcCD combinations, impeded RecBCD silencing. The findings suggest that the DNA fragments had single-stranded tails of a length which prevents loading of RecBCD. It is concluded that in wild-type cells the tails are effectively removed by single-strand-specific DNases including exonuclease I, RecJ DNase, and SbcCD DNase. By this, tailed DNA ends are processed to entry sites for RecBCD. It is proposed that end blunting functions to direct DNA ends into the RecABCD pathway. This pathway specifically activates Chi-containing regions for recombination and recombinational repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号