首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2006年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
ThomasMerckx  HansVan Dyck 《Oikos》2006,113(2):226-232
In evolutionary time, varying environments may lead to different morphs as a result of genetic adaptation and divergence or phenotypic plasticity. Landscapes that differ in the extent of habitat fragmentation may provide different selection regimes for dispersal, but also for other ecological functions. Several studies on flying insects have shown differences in flight morphology between landscapes, but whether such differences result from plastic responses have rarely been tested. We did a reciprocal transplant experiment with offspring of speckled wood butterfly females (Parargeaegeria) from three types of landscape differing in fragmentation: woodland landscape, landscape with woodland fragments and agricultural landscape with only hedgerows. Young caterpillars were allowed to grow individually on potted host grasses in small enclosures under the three landscape conditions (split‐brood design). Mortality in caterpillars was much higher in agricultural landscape compared to the other landscapes. Additive to the effect of landscape of development, landscape of origin also affected mortality rate in a similar way. Flight morphology of the adults resulting from the experiment differed significantly with landscape. Independent of the landscape of origin, males and females that developed in agricultural landscape were the heaviest and had the greatest wing loadings. Females that developed in agricultural landscape had higher relative thorax mass (i.e. greater flight muscle allocation) in line with adaptive predictions on altered dispersal behaviour with type of landscape. In males, relative thorax mass did not respond significantly relative to landscape of development, but males originating from landscape with woodland fragments allocated more into their thorax compared to males from the other types. We found significant G×E interactions for total dry mass and wing loading. Our results suggest the existence of phenotypic plasticity in butterfly flight morphology associated with landscape structure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号