首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  4篇
  2019年   1篇
  2016年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Biomechanics and Modeling in Mechanobiology - Many computer vision algorithms have been presented to track surface deformations, but few have provided a direct comparison of measurements with other...  相似文献   
2.
The VPH/Physiome Project is developing the model encoding standards CellML (cellml.org) and FieldML (fieldml.org) as well as web-accessible model repositories based on these standards (models.physiome.org). Freely available open source computational modelling software is also being developed to solve the partial differential equations described by the models and to visualise results. The OpenCMISS code (opencmiss.org), described here, has been developed by the authors over the last six years to replace the CMISS code that has supported a number of organ system Physiome projects.OpenCMISS is designed to encompass multiple sets of physical equations and to link subcellular and tissue-level biophysical processes into organ-level processes. In the Heart Physiome project, for example, the large deformation mechanics of the myocardial wall need to be coupled to both ventricular flow and embedded coronary flow, and the reaction-diffusion equations that govern the propagation of electrical waves through myocardial tissue need to be coupled with equations that describe the ion channel currents that flow through the cardiac cell membranes.In this paper we discuss the design principles and distributed memory architecture behind the OpenCMISS code. We also discuss the design of the interfaces that link the sets of physical equations across common boundaries (such as fluid-structure coupling), or between spatial fields over the same domain (such as coupled electromechanics), and the concepts behind CellML and FieldML that are embodied in the OpenCMISS data structures. We show how all of these provide a flexible infrastructure for combining models developed across the VPH/Physiome community.  相似文献   
3.
Although recent research emphasises the possible role of titin in skeletal muscle force enhancement, this property is commonly ignored in current computational models. This work presents the first biophysically based continuum-mechanical model of skeletal muscle that considers, in addition to actin–myosin interactions, force enhancement based on actin–titin interactions. During activation, titin attaches to actin filaments, which results in a significant reduction in titin’s free molecular spring length and therefore results in increased titin forces during a subsequent stretch. The mechanical behaviour of titin is included on the microscopic half-sarcomere level of a multi-scale chemo-electro-mechanical muscle model, which is based on the classic sliding-filament and cross-bridge theories. In addition to titin stress contributions in the muscle fibre direction, the continuum-mechanical constitutive relation accounts for geometrically motivated, titin-induced stresses acting in the muscle’s cross-fibre directions. Representative simulations of active stretches under maximal and submaximal activation levels predict realistic magnitudes of force enhancement in fibre direction. For example, stretching the model by 20 % from optimal length increased the isometric force at the target length by about 30 %. Predicted titin-induced stresses in the muscle’s cross-fibre directions are rather insignificant. Including the presented development in future continuum-mechanical models of muscle function in dynamic situations will lead to more accurate model predictions during and after lengthening contractions.  相似文献   
4.
Background, aims and scope  The environmental aspects of companies and their products are becoming more significant in delivering competitive advantage. Formway Furniture, a designer and manufacturer of office furniture products, is a New Zealand-based company that is committed to sustainable development. It manufactures two models of the light, intuitive, flexible and environmental (LIFE) office chair: one with an aluminium base and one with a glass-filled nylon (GFN) base. It was decided to undertake a life cycle assessment (LCA) study of these two models in order to: (1) determine environmental hotspots in the life cycle of the two chairs (goal 1); (2) compare the life cycle impacts of the two chairs (goal 2); and (3) compare alternative potential waste-management scenarios (goal 3). The study also included sensitivity analysis with respect to recycled content of aluminium in the product. Materials and methods  The LIFE chair models consist of a mix of metal and plastic components manufactured by selected Formway suppliers according to design criteria. Hence, the research methodology included determining the specific material composition of the two chair models and acquisition of manufacturing data from individual suppliers. These data were compiled and used in conjunction with pre-existing data, specifically from the ecoinvent database purchased in conjunction with the SimaPro7 LCA software, to develop the life cycle inventory of the two chair models. The life cycle stages included in the study extended from raw-material extraction through to waste management. Impact assessment was carried out using CML 2 baseline 2000, the methodology developed by Leiden University’s Institute for Environmental Sciences. Results  This paper presents results for global warming potential (GWP100). The study showed a significant impact contribution from the raw-material extraction/refinement stage for both chair models; aluminium extraction and refining made the greatest contribution to GWP100. The comparison of the two LIFE chair models showed that the model with the aluminium base had a higher GWP100 impact than the model with the GFN base. The waste-management scenario compared the GWP100 result when (1) both chair models were sent to landfill and (2) steel and aluminium components were recycled with the remainder of the chair sent to landfill. The results showed that the recycling scenario contributed to a reduced GWP100 result. Since production and processing of aluminium was found to be significant, a sensitivity analysis was carried out to determine the impact of using aluminium with different recycled contents (0%, 34% and 100%) in both waste-management scenarios; this showed that increased use of recycled aluminium was beneficial. The recycling at end-of-life scenarios was modelled using two different end-of-life allocation approaches, i.e. consequential and attributional, in order to illustrate the variation in results caused by choice of allocation approach. The results using the consequential approach showed that recycling at end-of-life was beneficial, while use of the attributional method led to a similar GWP100 as that seen for the landfill scenario. Discussion  The results show that the main hotspot in the life cycle is the raw-material extraction/refinement stage. This can be attributed to the extraction and processing of aluminium, a material that is energy intensive. The LIFE chair model with the aluminium base has a higher GWP100 as it contains more aluminium. Sensitivity analysis pertaining to the recycled content of aluminium showed that use of aluminium with high recycled content was beneficial; this is because production of recycled aluminium is less energy intensive than production of primary aluminium. The waste-management scenario showed that recycling at end-of-life resulted in a significantly lower GWP100 than landfilling at end-of-life. However, this result is dependent upon the modelling approach used for recycling. Conclusions  With respect to goal 1, the study found that the raw-material extraction/refinement stage of the life cycle was a significant factor for both LIFE chair models. This was largely due to the use of aluminium in the product. For goal 2, it was found that the LIFE chair model with the aluminium base had a higher GWP100 than the GFN model, again due to the material content of the two models. Results for goal 3 illustrated that recycling at end-of-life is beneficial when using a system expansion (consequential) approach to model recycling; if an attributional ‘cut-off’ approach is used to model recycling at end-of-life, there is virtually no difference in the results between landfilling and recycling. Sensitivity analysis pertaining to the recycled content of aluminium showed that use of higher recycled contents leads to a lower GWP100 impact. Recommendation and perspectives  Most of the GWP100 impact was contributed during the raw-material extraction/refinement stage of the life cycle; thus, the overall impact of both LIFE chair models may be reduced through engaging in material choice and supply chain environmental management with respect to environmental requirements. The study identified aluminium components as a major contributor to GWP100 for both LIFE chair models and also highlighted the sensitivity of the results to its recycled content. Thus, it is recommended that the use of aluminium in future product designs be limited unless it is possible to use aluminium with a high recycled content. With respect to waste management, it was found that a substantial reduction in the GWP100 impact would occur if the chairs are recycled rather than landfilled, assuming an expanding market for aluminium. Thus, recycling the two LIFE chair models at end-of-life is highly recommended.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号