全文获取类型
收费全文 | 530篇 |
免费 | 25篇 |
专业分类
555篇 |
出版年
2023年 | 6篇 |
2022年 | 3篇 |
2021年 | 9篇 |
2020年 | 8篇 |
2019年 | 7篇 |
2018年 | 8篇 |
2017年 | 7篇 |
2016年 | 10篇 |
2015年 | 28篇 |
2014年 | 39篇 |
2013年 | 32篇 |
2012年 | 59篇 |
2011年 | 44篇 |
2010年 | 31篇 |
2009年 | 19篇 |
2008年 | 30篇 |
2007年 | 34篇 |
2006年 | 31篇 |
2005年 | 19篇 |
2004年 | 23篇 |
2003年 | 17篇 |
2002年 | 23篇 |
2000年 | 5篇 |
1999年 | 3篇 |
1998年 | 6篇 |
1997年 | 2篇 |
1996年 | 4篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 4篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 3篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 5篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1974年 | 3篇 |
1973年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有555条查询结果,搜索用时 15 毫秒
1.
ECA3, a Golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis 总被引:1,自引:0,他引:1
Mills RF Doherty ML López-Marqués RL Weimar T Dupree P Palmgren MG Pittman JK Williams LE 《Plant physiology》2008,146(1):116-128
Calcium (Ca) and manganese (Mn) are essential nutrients required for normal plant growth and development, and transport processes play a key role in regulating their cellular levels. Arabidopsis (Arabidopsis thaliana) contains four P(2A)-type ATPase genes, AtECA1 to AtECA4, which are expressed in all major organs of Arabidopsis. To elucidate the physiological role of AtECA2 and AtECA3 in Arabidopsis, several independent T-DNA insertion mutant alleles were isolated. When grown on medium lacking Mn, eca3 mutants, but not eca2 mutants, displayed a striking difference from wild-type plants. After approximately 8 to 9 d on this medium, eca3 mutants became chlorotic, and root and shoot growth were strongly inhibited compared to wild-type plants. These severe deficiency symptoms were suppressed by low levels of Mn, indicating a crucial role for ECA3 in Mn nutrition in Arabidopsis. eca3 mutants were also more sensitive than wild-type plants and eca2 mutants on medium lacking Ca; however, the differences were not so striking because in this case all plants were severely affected. ECA3 partially restored the growth defect on high Mn of the yeast (Saccharomyces cerevisiae) pmr1 mutant, which is defective in a Golgi Ca/Mn pump (PMR1), and the yeast K616 mutant (Deltapmc1 Deltapmr1 Deltacnb1), defective in Golgi and vacuolar Ca/Mn pumps. ECA3 also rescued the growth defect of K616 on low Ca. Promoter:beta-glucuronidase studies show that ECA3 is expressed in a range of tissues and cells, including primary root tips, root vascular tissue, hydathodes, and guard cells. When transiently expressed in Nicotiana tabacum, an ECA3-yellow fluorescent protein fusion protein showed overlapping expression with the Golgi protein GONST1. We propose that ECA3 is important for Mn and Ca homeostasis, possibly functioning in the transport of these ions into the Golgi. ECA3 is the first P-type ATPase to be identified in plants that is required under Mn-deficient conditions. 相似文献
2.
3.
Hagen T Di Daniel E Culbert AA Reith AD 《The Journal of biological chemistry》2002,277(26):23330-23335
Glycogen synthase kinase-3 (GSK-3) is a serine-threonine kinase that is involved in multiple cellular signaling pathways, including the Wnt signaling cascade where it phosphorylates beta-catenin, thus targeting it for proteasome-mediated degradation. Unlike phosphorylation of glycogen synthase, phosphorylation of beta-catenin by GSK-3 does not require priming in vitro, i.e. it is not dependent on the presence of a phosphoserine, four residues C-terminal to the GSK-3 phosphorylation site. Recently, a means of dissecting GSK-3 activity toward primed and non-primed substrates has been made possible by identification of the R96A mutant of GSK-3beta. This mutant is unable to phosphorylate primed but can still phosphorylate unprimed substrates (Frame, S., Cohen, P., and Biondi R. M. (2001) Mol. Cell 7, 1321-1327). Here we have investigated whether phosphorylation of Ser(33), Ser(37), and Thr(41) in beta-catenin requires priming through prior phosphorylation at Ser(45) in intact cells. We have shown that the Arg(96) mutant does not induce beta-catenin degradation but instead stabilizes beta-catenin, indicating that it is unable to phosphorylate beta-catenin in intact cells. Furthermore, if Ser(45) in beta-catenin is mutated to Ala, beta-catenin is markedly stabilized, and phosphorylation of Ser(33), Ser(37), and Thr(41) in beta-catenin by wild type GSK-3beta is prevented in intact cells. In addition, we have shown that the L128A mutant, which is deficient in phosphorylating Axin in vitro, is still able to phosphorylate beta-catenin in intact cells although it has reduced activity. Mutation of Tyr(216) to Phe markedly reduces the ability of GSK-3beta to phosphorylate and down-regulate beta-catenin. In conclusion, we have found that the Arg(96) mutant has a dominant-negative effect on GSK-3beta-dependent phosphorylation of beta-catenin and that targeting of beta-catenin for degradation requires prior priming through phosphorylation of Ser(45). 相似文献
4.
LJ Schurgers IA Joosen EM Laufer ML Chatrou M Herfs MH Winkens R Westenfeld V Veulemans T Krueger CM Shanahan W Jahnen-Dechent E Biessen J Narula C Vermeer L Hofstra CP Reutelingsperger 《PloS one》2012,7(8):e43229
Background
Vitamin K-antagonists (VKA) are treatment of choice and standard care for patients with venous thrombosis and thromboembolic risk. In experimental animal models as well as humans, VKA have been shown to promote medial elastocalcinosis. As vascular calcification is considered an independent risk factor for plaque instability, we here investigated the effect of VKA on coronary calcification in patients and on calcification of atherosclerotic plaques in the ApoE−/− model of atherosclerosis.Methodology/Principal Findings
A total of 266 patients (133 VKA users and 133 gender and Framingham Risk Score matched non-VKA users) underwent 64-slice MDCT to assess the degree of coronary artery disease (CAD). VKA-users developed significantly more calcified coronary plaques as compared to non-VKA users. ApoE−/− mice (10 weeks) received a Western type diet (WTD) for 12 weeks, after which mice were fed a WTD supplemented with vitamin K1 (VK1, 1.5 mg/g) or vitamin K1 and warfarin (VK1&W; 1.5 mg/g & 3.0 mg/g) for 1 or 4 weeks, after which mice were sacrificed. Warfarin significantly increased frequency and extent of vascular calcification. Also, plaque calcification comprised microcalcification of the intimal layer. Furthermore, warfarin treatment decreased plaque expression of calcification regulatory protein carboxylated matrix Gla-protein, increased apoptosis and, surprisingly outward plaque remodeling, without affecting overall plaque burden.Conclusions/Significance
VKA use is associated with coronary artery plaque calcification in patients with suspected CAD and causes changes in plaque morphology with features of plaque vulnerability in ApoE−/− mice. Our findings underscore the need for alternative anticoagulants that do not interfere with the vitamin K cycle. 相似文献5.
6.
Li H Flachowsky H Fischer TC Hanke MV Forkmann G Treutter D Schwab W Hoffmann T Szankowski I 《Planta》2007,226(5):1243-1254
Flavonoids are a large family of polyphenolic compounds with manifold functions in plants. Present in a wide range of vegetables and fruits, flavonoids form an integral part of the human diet and confer multiple health benefits. Here, we report on metabolic engineering of the flavonoid biosynthetic pathways in apple (Malus domestica Borkh.) by overexpression of the maize (Zea mays L.) leaf colour (Lc) regulatory gene. The Lc gene was transferred into the M. domestica cultivar Holsteiner Cox via Agrobacterium tumefaciens-mediated transformation which resulted in enhanced anthocyanin accumulation in regenerated shoots. Five independent Lc lines were investigated for integration of Lc into the plant genome by Southern blot and PCR analyses. The Lc-transgenic lines contained one or two Lc gene copies and showed increased mRNA levels for phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), flavanone 3 beta-hydroxylase (FHT), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductases (LAR), anthocyanidin synthase (ANS) and anthocyanidin reductase (ANR). HPLC-DAD and LC-MS analyses revealed higher levels of the anthocyanin idaein (12-fold), the flavan 3-ol epicatechin (14-fold), and especially the isomeric catechin (41-fold), and some distinct dimeric proanthocyanidins (7 to 134-fold) in leaf tissues of Lc-transgenic lines. The levels of phenylpropanoids and their derivatives were only slightly increased. Thus, Lc overexpression in Malus domestica resulted in enhanced biosynthesis of specific flavonoid classes, which play important roles in both phytopathology and human health. 相似文献
7.
Generation of mature fat pads in vitro and in vivo utilizing 3-D long-term culture of 3T3-L1 preadipocytes 总被引:1,自引:0,他引:1
Fischbach C Spruss T Weiser B Neubauer M Becker C Hacker M Göpferich A Blunk T 《Experimental cell research》2004,300(1):54-64
Tissue-inherent factors such as cell-cell and cell-extracellular matrix interactions are regarded to exert a potentially large impact on adipogenesis as well as on secretory functions of adipose tissue. However, an appropriate 3-D adipogenesis model useful for addressing such interactions is still lacking. In this study, using tissue-engineering techniques, we demonstrate for the first time the development of coherent fat pads consisting of unilocular signet-ring cells in vitro. The constructs were generated by differentiating 3T3-L1 preadipocytes on 3-D polymeric scaffolds for either 9, 21, or 35 days in vitro. Only long-term culture yielded uniform tissues histologically comparable to native fat. Light and scanning electron microscopy provided direct evidence of 3-D tissue coherence and cell-cell contact in a tissue context, which was in strong contrast to conventional 2-D monolayer culture. Further differences between the two culture systems included enhanced secretion of leptin in 3-D tissue culture and differences in laminin expression (mRNA and protein level). Increase of triglyceride content over culture time and mRNA expression of other adipocyte genes, such as PPARgamma and Glut-4, were found to be similar. Implantation of long-term differentiated tissue constructs in nude mice resulted in further development and maintenance of fat pads. The presented model system is suggested to contribute to a better understanding of adipose tissue development and function facilitating studies on tissue-inherent interactions in vitro and in vivo. 相似文献
8.
Deconvolution is an essential step of image processing that aims to compensate for the image blur caused by the microscope's point spread function. With many existing deconvolution methods, it is challenging to choose the method and its parameters most appropriate for particular image data at hand. To facilitate this task, we developed DeconvTest: an open‐source Python‐based framework for generating synthetic microscopy images, deconvolving them with different algorithms, and quantifying reconstruction errors. In contrast to existing software, DeconvTest combines all components required to analyze deconvolution performance in a systematic, high‐throughput and quantitative manner. We demonstrate the power of the framework by using it to identify the optimal deconvolution settings for synthetic and real image data. Based on this, we provide a guideline for (a) choosing optimal values of deconvolution parameters for image data at hand and (b) optimizing imaging conditions for best results in combination with subsequent image deconvolution. 相似文献
9.
Ute Möllmann Lothar Heinisch Adolf Bauernfeind Thilo Köhler Dorothe Ankel-Fuchs 《Biometals》2009,22(4):615-624
The outer membrane permeability barrier is an important resistance factor of bacterial pathogens. In combination with drug
inactivating enzymes, target alteration and efflux, it can increase resistance dramatically. A strategy to overcome this membrane-mediated
resistance is the misuse of bacterial transport systems. Most promising are those for iron transport. They are vital for virulence
and survival of bacteria in the infected host, where iron depletion is a defense mechanism against invading pathogens. We
synthesized biomimetic siderophores as shuttle vectors for active transport of antibiotics through the bacterial membrane.
Structure activity relationship studies resulted in siderophore aminopenicillin conjugates that were highly active against
Gram-negative pathogens which play a crucial role in destructive lung infections in cystic fibrosis patients and in severe
nosocomial infections. The mechanism of action and the uptake of the compounds via specific iron siderophore transport routes
were demonstrated. The novel conjugates were active against systemic Pseudomonas aeruginosa infections in mice with ED50 values comparable to the quinolone ofloxacin and show low toxicity. 相似文献
10.
Cul1 and Cul7 are cullin E3 ubiquitin ligase scaffold proteins. Cul1 is known to form a complex with the RING domain protein Rbx1 and one of approximately 70 different F-box proteins. F-box proteins function as substrate receptor subunits and recruit numerous substrates for poly-ubiquitination. Similarly to Cul1, Cul7 interacts with Rbx1, however, only one F-box protein, Fbxw8, has been shown to bind to Cul7. To date only few Cul7 E3 ubiquitin ligase substrates, including cyclin D1, IRS-1 and GRASP65, have been reported, and using Fbxw8 affinity purification, we were unable to identify additional substrate proteins. Here we provide evidence for a model in which Cul7-Rbx1 can promote the ubiquitination of Cul1 substrates by forming high order complexes with Cul1-Rbx1. Binding of Cul1-Rbx1 to Cul7-Rbx1 is mediated via heterodimerization of Fbxw8 with other F-box proteins which function to recruit substrates into the E3 ligase complex. The formation of this high order complex is likely to increase polyubiquitination efficiency. 相似文献