首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   14篇
  国内免费   1篇
  2022年   1篇
  2021年   2篇
  2019年   3篇
  2018年   3篇
  2015年   4篇
  2014年   4篇
  2013年   9篇
  2012年   11篇
  2011年   5篇
  2010年   9篇
  2009年   11篇
  2008年   9篇
  2007年   8篇
  2006年   11篇
  2005年   10篇
  2004年   10篇
  2003年   11篇
  2002年   2篇
  2001年   9篇
  2000年   9篇
  1999年   4篇
  1998年   2篇
  1995年   2篇
  1993年   5篇
  1992年   1篇
  1991年   6篇
  1990年   3篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有175条查询结果,搜索用时 31 毫秒
1.
We developed a rapid method designated Target Detection Assay (TDA) to determine DNA binding sites for putative DNA binding proteins. A purified, functionally active DNA binding protein and a pool of random double-stranded oligonucleotides harbouring PCR primer sites at each end are included the TDA cycle which consists of four separate steps: a DNA protein incubation step, a protein DNA complex separation step, a DNA elution step and a polymerase chain reaction (PCR) DNA amplification step. The stringency of selection can be increased in consecutive TDA cycles. Since tiny amounts of retained DNA can be rescued by PCR, buffer systems, salt concentrations and competitor DNA contents can be varied in order to determine high affinity binding sites for the protein of choice. To test the efficiency of the TDA procedure potential DNA binding sites were selected by the DNA binding protein SP1 from a pool of oligonucleotides with random nucleotides at 12 positions. Target sites selected by recombinant SP1 closely matched the SP1 consensus site. If DNA recognition sites have to be determined for known, mutated or putative DNA binding proteins, the Target Detection Assay (TDA) is a versatile and rapid technique for consideration.  相似文献   
2.
Summary The use of reticulated polyurethane foam as a support material for the immobilization of methanogenic associations and its application to the anaerobic treatment of fine particulate solid wastes was investigated. The colonization of polyurethane support particles in a continuous upflow reactor fed on a mixture of acetate, propionate and butyrate, was both rapid and dense. The combination of rumen microorganisms and colonized support particles in a two-phase digester resulted in an efficient anaerobic decomposition of papermill sludge.  相似文献   
3.
Summary Two members of the human zinc finger Krüppel family, ZNF 12 (KOX 3) and ZNF 26 (KOX 20), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization. The presence of individual human zinc finger genes in mouse-human hybrid DNAs was correlated with the presence of specific human chromosomes or regions of chromosomes in the corresponding cell hybrids. Analysis of such mouse-human hybrid DNAs allowed the assignment of the ZNF 12 (KOX 3) gene to chromosome region 7p. The ZNF 26 (KOX 20) gene segregated with chromosome region 12q13-qter. The zinc finger genes ZNF 12 (KOX 3) and ZNF 26 (KOX 20) were localized by in situ chromosomal hybridization to human chromosome regions 7p22-21 and 12q24.33, respectively. These genes and the previously mapped ZNF 24 (KOX 17) and ZNF 29 (KOX 26) genes, are found near fragile sites.  相似文献   
4.
Tetracycline-reversible silencing of eukaryotic promoters.   总被引:12,自引:1,他引:11       下载免费PDF全文
  相似文献   
5.
Two members of the zinc finger Krüppel family, ZNF24 (KOX17) and ZNF29 (KOX26), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization to human chromosomes 18q12 and 17p13-p12, respectively. The mapping of ZNF29 together with the previously reported localization of ZFP3 suggests that a zinc finger gene complex is located on human chromosome 17p. ZNF29 maps centromeric to the human p53 tumor antigen gene (TP53). In the analogous murine position, the two mouse zinc finger genes Zfp2 and Zfp3 have recently been assigned to the distal region of mouse chromosome 11, the murine homolog of human chromosome 17. Both human zinc finger genes ZNF24 and ZNF29 are in chromosomal regions that have been noted to be deleted in neoplasms of the lung and of the central nervous system at chromosome 17p and in colorectal neoplasia at chromosomes 17p and 18q.  相似文献   
6.
Epitope-antibody-reactivities (EAR) of intravenous immunoglobulins (IVIGs) determined for 75,534 peptides by microarray analysis demonstrate that roughly 9% of peptides derived from 870 different human protein sequences react with antibodies present in IVIG. Computational prediction of linear B cell epitopes was conducted using machine learning with an ensemble of classifiers in combination with position weight matrix (PWM) analysis. Machine learning slightly outperformed PWM with area under the curve (AUC) of 0.884 vs. 0.849. Two different types of epitope-antibody recognition-modes (Type I EAR and Type II EAR) were found. Peptides of Type I EAR are high in tyrosine, tryptophan and phenylalanine, and low in asparagine, glutamine and glutamic acid residues, whereas for peptides of Type II EAR it is the other way around. Representative crystal structures present in the Protein Data Bank (PDB) of Type I EAR are PDB 1TZI and PDB 2DD8, while PDB 2FD6 and 2J4W are typical for Type II EAR. Type I EAR peptides share predicted propensities for being presented by MHC class I and class II complexes. The latter interaction possibly favors T cell-dependent antibody responses including IgG class switching. Peptides of Type II EAR are predicted not to be preferentially presented by MHC complexes, thus implying the involvement of T cell-independent IgG class switch mechanisms. The high extent of IgG immunoglobulin reactivity with human peptides implies that circulating IgG molecules are prone to bind to human protein/peptide structures under non-pathological, non-inflammatory conditions. A webserver for predicting EAR of peptide sequences is available at www.sysmed-immun.eu/EAR.  相似文献   
7.

Background

Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity.

Methods

The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences.

Results

Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data.

Conclusions

The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families.  相似文献   
8.
9.
Common complex polygenic diseases as autoimmune diseases have not been completely understood on a molecular level. While many genes are known to be involved in the pathways responsible for the phenotype, explicit causes for the susceptibility of the disease remain to be elucidated. The susceptibility to disease is thought to be the result of genetic epistatic interactions between common polymorphic genes. This polymorphism is mostly caused by single nucleotide polymorphisms (SNPs). Human subpopulations are known to differ in the susceptibility to the diseases and generally in the distribution of single nucleotide polymorphisms. The here presented approach retrieves SNPs with the most divergent frequencies for selected human subpopulations to help defining properties for the experimental verification of SNPs within defined regions. A web-accessible program implementing this approach was evaluated for multiple sclerosis (MS), a common human polygenic disease. A link to a summary of data from "The SNP Consortium" (TSC) with sex-dependencies of SNPs is available. Associations of SNPs to genes, genetic markers and chromosomal loci are retrieved from the Ensembl project. This tool is recommended to be used in conjunction with microarray analyses or marker association studies that link genes or chromosomal loci to particular diseases.  相似文献   
10.
Ontogeny of intestinal nutrient transport   总被引:1,自引:0,他引:1  
Children born prematurely lack the ability to digest and to absorb nutrients at rates compatible with their nutritional needs. As a result, total parenteral nutrition may need to be given. While this nutritional support may be lifesaving, the baby who receives this therapy is exposed to the risks of possible sepsis, catheter dysfunction, and liver disease. The rodent model of postnatal development provides a useful framework to investigate some of the cellular features of human intestinal development. The up-regulation of intestinal gene expression and precocious development of intestinal nutrient absorption can be achieved by providing growth factor(s) or by modifying the composition of the maternal diet during pregnancy and nursing or the weaning diet of the infant. Accelerating the digestive and absorptive functions of the intestine would thereby allow for the maintenance of infant nutrition through oral food intake, and might possibly eliminate the need for, and risks of, total parenteral nutrition. Accordingly, this review was undertaken to focus on the adaptive processes available to the intestine, to identify what might be the signals for and mechanisms of the modified nutrient absorption, and to speculate on approaches that need to be studied as means to possibly accelerate the adaptive processes in ways which would be beneficial to the newborn young.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号