首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   9篇
  2024年   1篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   5篇
  2012年   6篇
  2011年   7篇
  2010年   2篇
  2009年   8篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   8篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   4篇
  1976年   1篇
  1975年   1篇
  1968年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
1.
Sensing and generation of lipid membrane curvature, mediated by the binding of specific proteins onto the membrane surface, play crucial roles in cell biology. A number of mechanisms have been proposed, but the molecular understanding of these processes is incomplete. All-atom molecular dynamics simulations have offered valuable insights but are extremely demanding computationally. Implicit membrane simulations could provide a viable alternative, but current models apply only to planar membranes. In this work, the implicit membrane model 1 is extended to spherical and tubular membranes. The geometric change from planar to curved shapes is straightforward but insufficient for capturing the full curvature effect, which includes changes in lipid packing. Here, these packing effects are taken into account via the lateral pressure profile. The extended implicit membrane model 1 is tested on the wild-types and mutants of the antimicrobial peptide magainin, the ALPS motif of arfgap1, α-synuclein, and an ENTH domain. In these systems, the model is in qualitative agreement with experiments. We confirm that favorable electrostatic interactions tend to weaken curvature sensitivity in the presence of strong hydrophobic interactions but may actually have a positive effect when those are weak. We also find that binding to vesicles is more favorable than binding to tubes of the same diameter and that the long helix of α-synuclein tends to orient along the axis of tubes, whereas shorter helices tend to orient perpendicular to it. Adoption of a specific orientation could provide a mechanism for coupling protein oligomerization to tubule formation.  相似文献   
2.
3.
In this protocol, core-shell nanostructures are synthesized by plasma enhanced chemical vapor deposition. We produce an amorphous barrier by plasma polymerization of isopropanol on various solid substrates, including silica and potassium chloride. This versatile technique is used to treat nanoparticles and nanopowders with sizes ranging from 37 nm to 1 micron, by depositing films whose thickness can be anywhere from 1 nm to upwards of 100 nm. Dissolution of the core allows us to study the rate of permeation through the film. In these experiments, we determine the diffusion coefficient of KCl through the barrier film by coating KCL nanocrystals and subsequently monitoring the ionic conductivity of the coated particles suspended in water. The primary interest in this process is the encapsulation and delayed release of solutes. The thickness of the shell is one of the independent variables by which we control the rate of release. It has a strong effect on the rate of release, which increases from a six-hour release (shell thickness is 20 nm) to a long-term release over 30 days (shell thickness is 95 nm). The release profile shows a characteristic behavior: a fast release (35% of the final materials) during the first five minutes after the beginning of the dissolution, and a slower release till all of the core materials come out.  相似文献   
4.
Human-induced pluripotent stem cell-derived vascular smooth muscle cells (hiPSC-VSMCs) with proangiogenic properties have huge therapeutic potential. While hiPSC-VSMCs have already been utilized for wound healing using a biomimetic collagen scaffold, an in situ forming hydrogel mimicking the native environment of skin offers the promise of hiPSC-VSMC mediated repair and regeneration. Herein, the impact of a collagen type-I-hyaluronic acid (HA) in situ hydrogel cross-linked using a polyethylene glycol-based cross-linker on hiPSC-VSMCs viability and proangiogenic paracrine secretion was investigated. Our study demonstrated increases in cell viability, maintenance of phenotype and proangiogenic growth factor secretion, and proangiogenic activity in response to the conditioned medium. The optimally cross-linked and functionalized collagen type-I/HA hydrogel system developed in this study shows promise as an in situ hiPSC-VSMC carrier system for wound regeneration.  相似文献   
5.
6.
Targeted molecular dynamics simulations were used to study the conformational transition of influenza hemagglutinin (HA) from the native conformation to putative fusogenic or postfusion conformations populated at low pH. Three pathways for this conformational change were considered. Complete dissociation of the globular domains of HA was observed in one pathway, whereas smaller rearrangements were observed in the other two. The fusion peptides became exposed and moved toward the target membrane, although occasional movement toward the viral membrane was also observed. The effective energy profiles along the paths show multiple barriers. The final low-pH structures, which are consistent with available experimental data, are comparable in effective energy to native HA. As a control, the uncleaved precursor HA0 was also forced along the same pathway. In this case both the final energy and the energy barrier were much higher than in the cleaved protein. This study suggests that 1) as proposed, the native conformation is the global minimum energy conformation for the uncleaved precursor but a metastable state for cleaved HA; 2) the spring-loaded conformational change is energetically plausible in full-length HA; and 3) complete globular domain dissociation is not necessary for extension of the coiled coil and fusion peptide exposure, but the model with complete dissociation has lower energy.  相似文献   
7.
Ochratoxin A is a toxic and carcinogenic fungal secondary metabolite; its presence in foods is increasingly regulated. Various fungi are known to produce ochratoxins, but it is not known which species produce ochratoxins consistently and which species cause ochratoxin contamination of various crops. We isolated fungi in the Aspergillus ochraceus group (section Circumdati) and Aspergillus alliaceus from tree nut orchards, nuts, and figs in California. A total of 72 isolates were grown in potato dextrose broth and yeast extract-sucrose broth for 10 days at 30 degrees C and tested for production of ochratoxin A in vitro by high-pressure liquid chromatography. Among isolates from California figs, tree nuts, and orchards, A. ochraceus and Aspergillus melleus were the most common species. No field isolates of A. ochraceus or A. melleus produced ochratoxin A above the level of detection (0.01 microg/ml). All A. alliaceus isolates produced ochratoxin A, up to 30 microg/ml. We examined 50,000 figs for fungal infections and measured ochratoxin content in figs with visible fungal colonies. Pooled figs infected with A. alliaceus contained ochratoxin A, figs infected with the A. ochraceus group had little or none, and figs infected with Penicillium had none. These results suggest that the little-known species A. alliaceus is an important ochratoxin-producing fungus in California and that it may be responsible for the ochratoxin contamination occasionally observed in figs.  相似文献   
8.
Lazaridis T 《Proteins》2003,52(2):176-192
A simple extension of the EEF1 energy function to heterogeneous membrane-aqueous media is proposed. The extension consists of (a) development of solvation parameters for a nonpolar phase using experimental data for the transfer of amino acid side-chains from water to cyclohexane, (b) introduction of a heterogeneous membrane-aqueous system by making the reference solvation free energy of each atom dependent on the vertical coordinate, (c) a modification of the distance-dependent dielectric model to account for reduced screening of electrostatic interactions in the membrane, and (d) an adjustment of the EEF1 aqueous model in light of recent calculations of the potential of mean force between amino acid side-chains in water. The electrostatic model is adjusted to match experimental observations for polyalanine, polyleucine, and the glycophorin A dimer. The resulting energy function (IMM1) reproduces the preference of Trp and Tyr for the membrane interface, gives reasonable energies of insertion into or adsorption onto a membrane, and allows stable 1-ns MD simulations of the glycophorin A dimer. We find that the lowest-energy orientation of melittin in bilayers varies, depending on the thickness of the hydrocarbon layer.  相似文献   
9.
AIMS: The BiodivYsio trade mark stent (Biocompatibles Ltd, Farnham, UK) is coated with a phosphorylcholine (PC)-containing copolymer to confer biocompatibility. The SOPHOS (Study Of PHosphorylcholine coating On Stents) study was designed to assess the safety and efficacy of this novel coronary stent and by indirect comparison to indicate equivalence with other formal stent studies. METHODS AND RESULTS: Patients with angina and a single short (#x2A7F;12 mm) de novo lesion in a native coronary artery of >/=2.75 mm diameter were included. A total of 425 patients were allocated in 24 centers. Clinical data were collected at one-, six- and nine-month follow-up. Angiography was performed before and after the stent implantation. In addition, in the first 200 patients (SOPHOS A) angiography was routinely performed at six months. The following 225 patients (SOPHOS B) were merely followed up clinically. The primary end-point of the study, the six-month MACE-rate (MACE = Major Adverse Cardiac Events) was 13.4% (two cardiac death; five Q-wave/nine non-Q-wave myocardial infarctions (MI); nine CABG and 32 target lesion revascularization (TLR), which is similar to the calculated 15% MACE-rate in comparable reference studies. Secondary end-points included among others restenosis at six months in the SOPHOS A population. The target vessel diameter was 2.98 +/- 0.48 mm. Minimal lumen diameter pre/post procedure and at follow-up was 1.00 +/- 0.32, 2.69 +/- 0.37, 1.91 +/- 0.71 mm, respectively. The binary restenosis rate (>/=50% diameter stenosis at follow-up) was 17.7%. CONCLUSION: The coronary BiodivYsio stent is safe and effective as a primary device for the treatment of native coronary artery lesions in patients with stable or unstable angina pectoris. Clinical and angiographic results are in the statistical range of equivalence with comparable studies with other current stents.  相似文献   
10.
P-selectin is an adhesion molecule expressed on activated endothelial and platelet surfaces. The function of the short consensus repeats (SCRs) of P-selectin, homologous with the SCRs of complement regulatory proteins is largely unknown. In a model of murine hindlimb ischemia where local reperfusion injury is partly mediated by IgM natural antibody and classical complement pathway activation, we hypothesized that human soluble P-selectin (sP-sel) would moderate the complement component of the inflammatory response. Infusion of sP-sel supernatant or purified (p) sP-sel prepared from activated human platelets, reduced ischemic muscle vascular permeability by 48% and 43%, respectively, following reperfusion. Hindlimb immunohistochemistry demonstrated negligible C3 staining colocalized with IgM in these groups compared with intense staining in the untreated injured mice. In vitro studies of mouse serum complement hemolytic activity showed that psP-sel inhibited the classical but not alternative complement pathway. Flow cytometry demonstrated that psP-sel inhibited C1q adherence to sensitized red blood cells. From these data we conclude that sP-sel moderates skeletal muscle reperfusion injury by inhibition of the classical complement pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号