首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   5篇
  2018年   3篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有96条查询结果,搜索用时 78 毫秒
1.
The cytochalasin B (CYB)-blocked binucleated cell assay has been explored to analyze micronuclei and cell cycle kinetics using 2 known mutagenic carcinogens in V79 Chinese hamster lung cells. To determine the optimum time to obtain the maximum number of binucleated cells for micronucleus analysis, duplicate cultures of exponentially growing cells were treated with 3 micrograms/ml CYB for varying durations (8-48 h). A peak appearance of binucleated cells at 16 h in the presence of CYB suggested this as an optimum time for micronucleus analysis in binucleated V79 cells. To evaluate the capacity for induction of micronuclei in V79 cells, 2 mutagenic carcinogens, mitomycin C (0.125-1.0 micrograms/ml) and cyclophosphamide (2-12 micrograms/ml) were tested in duplicate cultures. Mitomycin C, a direct-acting alkylating agent, caused approximately an 18-fold increase in micronucleus frequency over controls at the highest concentration tested (1.0 micrograms/ml), and this increase occurred in a dose-related manner (r = 0.92). The concentrations of mitomycin C tested also caused a significant dose-related cell cycle delay, thus suggesting cytotoxicity to V79 cells. Cyclophosphamide, an indirect-acting alkylating agent, requiring the presence of S9 mix, caused approximately a 17-fold increase in micronucleus frequency over controls at the highest tested concentration (12 micrograms/ml), with a clear dose response (r = 0.99). The various concentrations of cyclophosphamide also caused cytotoxicity in a dose-related fashion. Thus, this study demonstrates the usefulness of the cytokinesis-block method in V79 cells as a possible screen to analyze micronucleus induction and cytotoxicity. Because this approach is much less labor intensive than conducting a structural chromosomal analysis, this assay has great potential both as an initial screen for clastogenic activity and as a tool for investigating the underlying mechanisms for clastogenicity.  相似文献   
2.
Summary Whole-body autoradiography demonstrated the different distribution of [125I]-C-ANP and [125I]-ANP to rat tissues. Highest enrichment of radioactivity of both labelled peptides was found in the kidney. In some organs we found remarkable differences between [125I]-ANP and [125I]-C-ANP. In the kidney cortex, especially in the glomeruli, as well as in the endocardium, the zona glomerulosa and the medulla of the adrenal gland, where high levels of radioactivity after [125I]-ANP administration were detected, no or just few radioactivity was found after administration of [125I]-C-ANP. On the other hand in the kidney papilla and the outer subcortical medulla, characteristic blackening was found after [125I]-C-ANP administration. Those differences might be important for the understanding of pharmacological actions of ANP analogues.This work is part of the doctoral thesis of Frank Heidemann to be presented at the Ludwig-Maximilians-Universität München, FRG  相似文献   
3.
4.
Keratin 8 (K8) and keratin-18 (K18) are the major intermediate filament proteins in the intestinal epithelia. The regulation and function of keratin in the intestinal epithelia is largely unknown. In this study we addressed the role and regulation of K8 and K18 expression by interleukin 6 (IL-6). Caco2-BBE cell line and IL-6 null mice were used to study the effect of IL-6 on keratin expression. Keratin expression was studied by Northern blot, Western blot, and confocal microscopy. Paracellular permeability was assessed by apical-to-basal transport of a fluorescein isothiocyanate dextran probe (FD-4). K8 was silenced using the small interfering RNA approach. IL-6 significantly up-regulated mRNA and protein levels of K8 and K18. Confocal microscopy showed a reticular pattern of intracellular keratin localized to the subapical region after IL-6 treatment. IL-6 also induced serine phosphorylation of K8. IL-6 decreased paracellular flux of FD-4 compared with vehicle-treated monolayers. K8 silencing abolished the decrease in paracellular permeability induced by IL-6. Administration of dextran sodium sulfate (DSS) significantly increased intestinal permeability in IL-6-/- mice compared with wild type mice given DSS. Collectively, our data demonstrate that IL-6 regulates the colonic expression of K8 and K18, and K8/K18 mediates barrier protection by IL-6 under conditions where intestinal barrier is compromised. Thus, our data uncover a novel function of these abundant cytoskeletal proteins, which may have implications in intestinal disorders such as inflammatory bowel disease wherein barrier dysfunction underlies the inflammatory response.  相似文献   
5.
6.
The purpose of the present study was to investigate the effect of aluminum on gap junctional intercellular communication (GJIC) in cultured astrocytes. In the CNS the extracellular environment and metabolic status of neurons is dependent upon astrocytes, which are known to exhibit GJIC. This cell-to-cell communication provides a cytoplasmic continuity between adjacent cells, allowing exchange of diverse ions, second messengers, and metabolites. To study the effects of aluminum intoxication on GJIC in cultured glial cells, astroglial cell cultures obtained from fetal rat brains were exposed to aluminum lactate for 2-6 weeks. To demonstrate the metabolic coupling of neighboring cells, the technique of microinjection of the gap junction permeable substance neurobiotin was performed. Whereas in controls intensive GJIC was observed by dye transfer of neurobiotin from the microinjected cell into the adjacent astrocytes, aluminum treatment significantly impaired this cellular communication. As aluminum is known to affect cytoskeletal elements, additional investigations into the organization of intermediate filaments (glial fibrillary acid protein, GFAP) and microfilaments in control astrocytes and subsequent aluminum exposure were performed with the aid of fluorescence microscopy and rapid-freeze, deep-etch electron microscopy. Aluminum exposure led to an aggregation of GFAP-positive filaments near to the cell nucleus, accompanied by a destruction of the actin cytoskeleton, especially close to the cell membrane. Ultrastructurally these data could be verified as prominent areas without actin filaments contacting the cell membrane detectable in aluminum-treated astrocytes. Immunohistochemical staining of Cx43 revealed an impaired trafficking of this connexin into the cell prolongations following aluminum treatment, although electron-microscopic data revealed that gap junctions between adjacent astrocytes were still present after aluminum incubation for 24 days. In conclusion, in cultured astrocytes the morphological integrity of microfilaments and the intermediate filament network seem to be fundamental for the translocation of connexins from Golgi complex into the cellular prolongation to exhibit proper and extensive cellular communication through gap junctions.  相似文献   
7.
We have investigated the effects of taxol on the axonal transport of horseradish peroxidase (HRP) in dorsal root ganglia (DRG) cells and their neuronal cytoskeleton. The former were analysed by microinjection of HRP into single DRG cells and the latter was studied by means of immunohistochemistry and cryo-electron microscopy. In cultured and untreated DRG cells, microinjected HRP was typically transported anterogradely several hundred micrometres along their neurites. Different exposure periods (1, 2 and 3 days) to taxol were analysed. The axonal transport of HRP in DRG cells was time-dependently impeded by taxol. After the drug had been washed out, a recovery of the axonal transport of HRP was observed and confirmed by quantitative analysis. Cryo-electron microscopy revealed an abnormal aggregation of axonal and cytoplasmic microtubules, associated with a decreased amount of cross-linking structures, in taxol-treated DRG cell cultures. After 3 days of taxol exposure, microtubule-associated proteins and Tau-protein were restricted to the cellular somata but the neurofilament network and tubulin-proteins seemed to be unaffected. Our results demonstrate, for the first time, an inhibition of anterograde axonal transport of HRP in single neurons by taxol. This effect is reversible and seems not to be caused by cellular damage, but is rather a consequence of an altered organisation of microtubules and/or microtubule-associated proteins.  相似文献   
8.
A fundamental challenge to contemporary genetics is to distinguish rare missense alleles that disrupt protein functions from the majority of alleles neutral on protein activities. High-throughput experimental tools to securely discriminate between disruptive and non-disruptive missense alleles are currently missing. Here we establish a scalable cell-based strategy to profile the biological effects and likely disease relevance of rare missense variants in vitro. We apply this strategy to systematically characterize missense alleles in the low-density lipoprotein receptor (LDLR) gene identified through exome sequencing of 3,235 individuals and exome-chip profiling of 39,186 individuals. Our strategy reliably identifies disruptive missense alleles, and disruptive-allele carriers have higher plasma LDL-cholesterol (LDL-C). Importantly, considering experimental data refined the risk of rare LDLR allele carriers from 4.5- to 25.3-fold for high LDL-C, and from 2.1- to 20-fold for early-onset myocardial infarction. Our study generates proof-of-concept that systematic functional variant profiling may empower rare variant-association studies by orders of magnitude.  相似文献   
9.
Relatively little is known about the physical structure and ecological adaptations of elasmobranch sensory systems. In particular, elasmobranch vision has been poorly studied compared to the other senses. Virtually nothing is known about whether elasmobranchs possess multiple cone types, and therefore the potential for colour vision, or how the spectral tuning of their visual pigments is adapted to their different lifestyles. In this study, we measured the spectral absorption of the rod and cone visual pigments of the blue-spotted maskray, Dasyatis kuhlii, using microspectrophotometry. D. kuhlii possesses a rod visual pigment with a wavelength of maximum absorbance (λmax) at 497 nm and three spectrally distinct cone types with λmax values at 476, 498 and 552 nm. Measurements of the spectral transmittance of the ocular media reveal that wavelengths below 380 nm do not reach the retina, indicating that D. kuhlii is relatively insensitive to ultraviolet radiation. Topographic analysis of retinal ganglion cell distribution reveals an area of increased neuronal density in the dorsal retina. Based on peak cell densities and using measurements of lens focal length made using laser ray tracing and sections of frozen eyes, the estimated spatial resolving power of D. kuhlii is 4.10 cycles per degree.  相似文献   
10.
Reports of the effects of beta-adrenergic receptor blocking agents on the proliferative activity of rat jejunal crypt cells are contradictory. According to Tutton and Helme (1974) a single injection of propranolol or practolol (10 mg/kg) increased the mitotic index twofold and shortened the duration of the cell cycle of the crypt cells. However, upon repeating the experiments with double the dose of propranolol, Maurer-Schultze et al. (1986) observed no such effects using cell kinetic methods with 3H-thymidine instead of the stathmokinetic method applied by Tutton and Helme. Since the discrepancy in the results may have been due to methodological differences the same stathmokinetic method used by Tutton and Helme has been applied in the present work. However, the results obtained with this method indicate no influence by propranolol on the proliferation of jejunal crypt cells even with a dose of 20 mg/kg. Consequently we were unable to confirm the stimulant effect of propranolol on crypt cell proliferation. The possible causes of the discrepancy between the present results and those of Tutton and Helme are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号