首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   30篇
  国内免费   1篇
  2022年   3篇
  2021年   4篇
  2018年   2篇
  2017年   6篇
  2016年   10篇
  2015年   11篇
  2014年   7篇
  2013年   8篇
  2012年   13篇
  2011年   15篇
  2010年   15篇
  2009年   9篇
  2008年   13篇
  2007年   11篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   7篇
  2002年   4篇
  2001年   11篇
  2000年   5篇
  1999年   4篇
  1998年   13篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   8篇
  1992年   6篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1959年   1篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
1.
We have broadly defined the DNA regions regulating esterase6 activity in several life stages and tissue types of D. melanogaster using P- element-mediated transformation of constructs that contain the esterase6 coding region and deletions or substitutions in 5' or 3' flanking DNA. Hemolymph is a conserved ancestral site of EST6 activity in Drosophila and the primary sequences regulating its activity lie between -171 and -25 bp relative to the translation initiation site: deletion of these sequences decrease activity approximately 20-fold. Hemolymph activity is also modulated by four other DNA regions, three of which lie 5' and one of which lies 3' of the coding region. Of these, two have positive and two have negative effects, each of approximately twofold. Esterase6 activity is present also in two male reproductive tract tissues; the ejaculatory bulb, which is another ancestral activity site, and the ejaculatory duct, which is a recently acquired site within the melanogaster species subgroup. Activities in these tissues are at least in part independently regulated: activity in the ejaculatory bulb is conferred by sequences between -273 and -172 bp (threefold decrease when deleted), while activity in the ejaculatory duct is conferred by more distal sequences between -844 and -614 bp (fourfold decrease when deleted). The reproductive tract activity is further modulated by two additional DNA regions, one in 5' DNA (-613 to -284 bp; threefold decrease when deleted) and the other in 3' DNA (+1860 to +2731 bp; threefold decrease when deleted) that probably overlaps the adjacent esteraseP gene. Collating these data with previous studies suggests that expression of EST6 in the ancestral sites is mainly regulated by conserved proximal sequences while more variable distal sequences regulate expression in the acquired ejaculatory duct site.   相似文献   
2.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
3.
4.
The functional morphology of the olfactory organ in Spinachia spinachia (L.), which has only a single nare, was studied by light microscopy, scanning electron microscopy, and experimental investigations. It was shown that only the incoming water passes over the olfactory epithelium. The device for ventilating this olfactory organ is an accessory ventilation sac activated by respiratory pressure changes in the buccal cavity. This one-way water current over the olfactory epithelium in a monotrematous olfactory organ was found to be possible because of the morphology of the olfactory organ combined with movements of the lateral wall of the olfactory organ and the nasal tube during respiration. The olfactory epithelium is divided into irregular islets. Both ciliated receptor cells and microvillous receptor cells are present.  相似文献   
5.
Schistosomiasis vector snails are subjected to extreme seasonal changes, particularly in ephemeral rivers and lentic waterbodies. In the tropics, aestivation is one of the adaptive strategies for survival and is used by snails in times of extremely high temperatures and desiccation. Aestivation therefore plays an important role in maintaining the transmission of schistosomiasis. This review assesses the possible impacts of climate change on the temporal and spatial distribution of schistosomiasis-transmitting snails with special emphasis on aestivation, and discusses the effect of schistosome infection on aestivation ability. The impacts of parasite development on snails, as well as physiological changes, are discussed with reference to schistosomiasis transmission. This review shows that schistosome-infected snails have lower survival rates during aestivation, and that those that survive manage to get rid of the infection. In general, snail aestivation ability is poor and survival chances diminish with time. Longer dry periods result in fewer, as well as uninfected, snails. However, the ability of the surviving snails to repopulate the habitats is high.  相似文献   
6.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   
7.
Human unhydroxylated homotrimeric triple-helical collagen I produced in transgenic plants was used as an experimental model to provide insights into the role of hydroxyproline in molecular folding and fibril formation. By using chemically cross-linked molecules, we show here that the absence of hydroxyproline residues does not prevent correct folding of the recombinant collagen although it markedly slows down the propagation rate compared with bovine fully hydroxylated homotrimeric collagen I. Relatively slow cis-trans-isomerization in the absence of hydroxyproline likely represents the rate-limiting factor in the propagation of the unhydroxylated collagen helix. Because of the lack of hydroxylation, recombinant collagen molecules showed increased flexibility as well as a reduced melting temperature compared with native homotrimers and heterotrimers, whereas the distribution of charged amino acids was unchanged. However, unlike with bovine collagen I, the recombinant collagen did not self-assemble into banded fibrils in physiological ionic strength buffer at 20 degrees C. Striated fibrils were only obtained with low ionic strength buffer. We propose that, under physiological ionic strength conditions, the hydroxyl groups in the native molecule retain water more efficiently thus favoring correct fibril formation. The importance of hydroxyproline in collagen self-assembly suggested by others from the crystal structures of collagen model peptides is thus confirmed experimentally on the entire collagen molecule.  相似文献   
8.
We report here on the genetic engineering of four new Escherichia coli tester bacteria, coexpressing human CYP1A1, CYP2A6, CYP3A4 or CYP3A5 with human NADPH cytochrome P450 reductase (RED) by a biplasmid coexpression system, recently developed to express human CYP1A2 in the tester strain MTC. The four new strains were compared for CYP- and RED-expression levels and CYP activities with the formerly developed CYP1A2 expressing strain. CYP1A2 and CYP2A6 were expressed at the highest, CYP1A1 at the lowest and CYP3A4 and CYP3A5 at intermediate expression levels. Membranes of all five tester bacteria demonstrated similar RED-expression levels, except for the two CYP3A-containing bacteria which demonstrated slightly increased RED-levels. CYP-activities were determined as ethoxyresorufin deethylase (CYP1A1 and CYP1A2), coumarin 7-hydroxylase (CYP2A6) and erythromycin N-demethylase (CYP3A4 and CYP3A5) activities. Reaction rates were comparable with those obtained previously for these CYP-enzymes, except for CYP3A5 which demonstrated a lower activity. Benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene demonstrated mutagenicity in the CYP1A1 expressing strain with mutagenic activities, respectively, approximately 10-fold and 100-fold higher as compared with those obtained with the use of rat liver S9 fraction. Aflatoxin B1 demonstrated a significant mutagenicity with all CYP expressing strains, albeit lower as compared to those obtained with the use of rat liver S9. CYP1A2 was approximately 3-fold more effective in generating a mutagenic response of AFB1 as compared to CYP3A4. CYP3A5 and CYP3A4 demonstrated comparable capacities in AFB1 bioactivation which was equal as found for CYP1A1. It is concluded that these four new strains contain stable CYP- and RED-expression, significant CYP-activities and demonstrated significant bioactivation activities with several diagnostic carcinogens.  相似文献   
9.
10.
Collagen is a potent adhesive substrate for cells, an event essentially mediated by the integrins alpha 1 beta 1 and alpha 2 beta 1. Collagen fibrils also bind to the integrin alpha 2 beta 1 and the platelet receptor glycoprotein VI to activate and aggregate platelets. The distinct triple helical recognition motifs for these receptors, GXOGER and (GPO)n, respectively, all contain hydroxyproline. Using unhydroxylated collagen I produced in transgenic plants, we investigated the role of hydroxyproline in the receptor-binding properties of collagen. We show that alpha 2 beta 1 but not alpha 1 beta 1 mediates cell adhesion to unhydroxylated collagen. Soluble recombinant alpha 1 beta 1 binding to unhydroxylated collagen is considerably reduced compared with bovine collagens, but binding can be restored by prolyl hydroxylation of recombinant collagen. We also show that platelets use alpha 2 beta 1 to adhere to the unhydroxylated recombinant molecules, but the adhesion is weaker than on fully hydroxylated collagen, and the unhydroxylated collagen fibrils fail to aggregate platelets. Prolyl hydroxylation is thus required for binding of collagen to platelet glycoprotein VI and to cells by alpha 1 beta 1. These observations give new insights into the molecular basis of collagen-receptor interactions and offer new selective applications for the recombinant unhydroxylated collagen I.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号