首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2003年   1篇
  1997年   2篇
  1996年   1篇
  1989年   1篇
  1985年   2篇
  1983年   3篇
  1981年   1篇
  1976年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有15条查询结果,搜索用时 187 毫秒
1.
There is compelling evidence that a general erosion of the global ozone layer is occurring. Since ozone in the stratosphere absorbs much of the shortwave solar ultraviolet radiation (UV-B), diminished ozone means that more UV-B of a very specific wavelength composition will be received at the earth's surface. Evaluating the implications for vegetation involves consideration of the wavelength specificity of biological photochemical reactions and their sensitivity to the extant and future solar spectrum. Recent research suggests the occurrence of direct damaging reactions and of indirect morphological and chemical responses with implications at the community and ecosystem levels.  相似文献   
2.
An approximately 7 % difference in biologically effective ultraviolet-B (UV-B) radiation did not significantly influence leaf length or leaf peroxidase activity of chives (Allium schoenoprasum L.). However, correlation and regression analyses with different climatic parameters revealed that increased UV-B radiation enhanced ascorbate peroxidase activity in chive leaves whereas guaiacol peroxidase was inhibited. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
Inhibition of photosynthetic activity by UV-B radiation in radish seedlings   总被引:1,自引:0,他引:1  
Inhibition of primary photosynthetic reactions by UV-B radiation (280 nm-320 nm) was demonstrated in radish leaves ( Raphanus sativus cv. Saxa Treib). Detached radish cotyledons from 10-day-old seedlings were irradiated with continuous white light and increasing UV-B irradiances using cut-off filters with increasing transmission for shorter wavelengths (WG 360, WG 345, WG 320, WG 305, WG 295, WG 280). Photosynthetic activity measured in terms of chlorophyll fluorescence induction (Kautsky effect) after 2, 4, 6, 8 and 24 h irradiation decreased in a wavelength dependent way with increasing UV-B irradiance and irradiation time.
Radish seedlings grown for 10 days from the time of germination under the same UV-B irradiation conditions exhibited similar reductions of the variable fluorescence as detached cotyledons irradiated for short time periods. They additionally had lower initial fluorescence at high UV-B radiation levels, although the chlorophyll content per leaf area increased. In contrast to short term experiments, the plastoquinone and flavonoid content increased with increasing UV-B irradiance when based on leaf area.  相似文献   
4.
H. Uhrig  M. Tevini 《Planta》1976,128(2):173-178
Summary The process of cell wall regeneration around two species of higher plant protoplasts has been studied using reflection scanning electron microscopy. The first stage in the process is the formation of short fibres from randomly spaced centres. With protoplasts of tobacco leaf (Nicotiana tabacum L., cv White Burley) these fibres then elongate and interlace apparently at random to give rise to a matted continuous layer of wall. Protoplasts of a suspension culture of grapevine cells (Vitis vinifera L. cv Müller Thurgau) produce short fibres but these fail to elongate. Budding is observed during wall regeneration around vine protoplasts. The results are discussed in terms of the mechanical properties of the wall and its relationship to changes in plasmalemma morphology which are observed during wall formation.Abbreviation SEM scanning electron microscopy  相似文献   
5.
6.
Effects of ultraviolet-B irradiation on plants during mild water stress.   总被引:7,自引:0,他引:7  
Cucumber ( Cucumis sativus L. cv. Delikatess) and radish ( Raphanus sativus L. cv. Saxa Treib) were grown in a factorial design under two ultraviolet-B (UV–B) irradiances and three levels of water stress. On a weighted, daily dose basis the UV–B radiation treatments were equivalent to ambient levels during the beginning of the growing season (controls) and those predicted for an 11.6% ozone depletion during the summer solstice at 49°N latitude. Water stress was achieved by varying the frequency of watering. The combination of UV–B radiation and water stress resulted in large species differences in the pattern of stomatal resistances. This study indicated that Cucumis is one of the most sensitive crop species to UV–B radiation yet identified and that the primary effect of UV–B radiation in this species is a decrease in the leaf diffusive resistance to water vapor. This, therefore, may result in reductions in growth via increased water stress.  相似文献   
7.
Barley (Hordeum vulgare), corn (Zea mays), bean (Phaseolus vulgaris), and radish (Raphanus sativus) seedlings were continuously irradiated under a lighting device for 5–10 d at an increased ultraviolet (UV)-B fluence rate. In their growth parameters, composition, and leaf surface, these four species responded differently to the increased UV-B exposure. Bean seedlings suffered the most serious effects, radish and barley less, and corn was hardly influenced at all. In all plant species, the fresh weight, the leaf area, the amounts of chlorophylls, carotenoids and the galactolipids of the chloroplasts were reduced. The lipid content of the corn and bean seedlings also diminished. But all the irradiated plants showed a rise in their protein content compared to the control plants. The content of flavonoids increased in barley and radish seedlings by about 50%. The effects on growth parameters and composition were more extensive with increasing UV-B fluence rates, at least as shown in the case of barley seedlings. The fresh weights fell proportionally with the chlorophylls and carotenoids. In contrast, the flavonoid content of barley leaves rose parallel to the increasing UV-B fluence rates and reached 180% of the value in the control plants with the highest UV-B fluence rate. Scorching appeared regularly in the form of bronze leaf discoloration at the highest UV-B fluence rates. Scanning electron micrographs of the leaf surface of UV-B irradiated plants showed deformed epidermal structures.Abbreviations MGDG monogalactosyldiglyceride - DGDG digalactosyldiglyceride - SL sulfoquinovosyldiglyceride - PG phosphatidylglycerol - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - LA leaf are - FW fresh weight - DW dry weight - SEM scanning electron microscopy - C total carotenoids - Chl total chlorophyll  相似文献   
8.
Phosphatmangel wirkt sich besonders stark auf den Phospholipidgehalt von Impatiens-Pflanzen aus. Je nach Bezug auf Frischgewicht, Trockengewicht, Chlorophyllgehalt oder Blattfläche liegt der Phospholipidgehalt bei P-Mangel zwischen 20 bis 50% des Gehaltes im Vergleich zu vollernährten Pflanzen. Von den einzelnen Phospholipiden werden GPC, GPG und GPE am stärksten, GPI am wenigsten in der Höhe ihres Gehaltes beeinflußt. Die Bildung der Chlorophylle und Galaktolipide wird unter P-Mangel nur wenig oder gar nicht gehemmt. Auch in isolierten Chloroplasten aus P-Mangel-Pflanzen, in denen die Phospholipide GPG, GPC und GPI und möglicherweise GPE vorhanden sind, bestätigen sich die bereits im Blatt gefundenen Tendenzen. So bleiben auch die funktionellen Relationen der Pigmente und lipophilen Plastidenchinone nahezu erhalten. Dieses spricht dafür, daß durch P-Mangel die Thylakoiddifferenzierung nicht wesentlich behindert wird, und daß die Phospholipide offenbar bei der Formation der Thylakoide keine wesentliche Rolle spielen. Die Möglichkeit, daß die im P-Mangel offensichtlich im Überschuß vorhandenen Galaktolipide in Plastoglobuli gespeichert werden, wird diskutiert Nitratmangel wirkt sich im Gegensatz zum Phosphatmangel besonders stark auf die Synthese der Chlorophylle und Glykolipide aus. Bei Bezug auf Frischgewicht und Blattfläche liegt der Chlorophyllgehalt bei rund 25%, der Galaktolipidgehalt bei rund 50% des Gehaltes von voll mit Nitrat versorgten Pflanzen. Der Gesamtphospholipidgehalt wird dagegen um 35 bis 40% beeinträchtigt. Von den Glykolipiden ist Monogalaktosyldiglycerid, von den Phospholipiden GPC und GPE durch N-Mangel am stärksten in der Höhe ihres Gehaltes beeinflußt. Die Synthese des Sulfolipids und der Phospholipide GPI und GPS wird offenbar durch Nitratmangel gefördert. Von den ausschließlich in Plastiden lokalisierten photosynthetischen Pigmenten und Lipochinonen werden β-Carotin sowie Plastohydrochinon und α-Tocopherol in ihrem Gehalt am wenigsten beeinträchtigt, so daß sich die funktionellen Relationen normal ausgebildeter Chloroplasten unter N-Mangel erheblich verändern. β-Carotin und die reduzierten Lipochinone PQ?H2 und α-Tocopherol liegen im N-Mangelchloroplasten offenbar infolge gestörter Thylakoidformation im Überschuß vor und werden in den Plastoglobuli des Stroma abgelagert Frau Gertrud Willmann danke ich für zuverlässige technische Mitarbeit, der Deutschen Forschungsgemeinschaft für die Bereitstellung von Sachmittelnz  相似文献   
9.
Mark  U.  Tevini  M. 《Plant Ecology》1997,128(1-2):225-234
The effects of solar UV-B radiation, in combination with elevated temperature (4 °C ) and CO2 (680 L L-1 concentration, on sunflower and maize seedlings were studied from May to August in 1991 at the research station Quinta de São Pedro in Portugal (38.7°N). The ambient solar radiation of Portugal was reduced to levels of Central European latitudes by using the ozone filter technique. This radiation served as control, while the ambient solar radiation of Portugal was to simulate intense UV-B treatment (+30%). All plants were grown up to 18 days in 4 climate controlled growth chambers simulating a daily course of temperature with Tmax=28 °C or 32 °C , resp., and ambient CO2 concentrations (340 L L-1); in one chamber the CO2 concentration was twice as high (680 L L-1). Under intense UV-B and at 28 °C (Tmax) all growth parameters (height, leaf area, fresh and dry weight, stem elongation rate, relative growth rate) of sunflower and maize seedlings were reduced down to 35% as compared to controls. An increase in growing temperature by 4 °C , alone or in combination with doubled CO2, compensated or even overcompensated the UV-B effect so that the treated plants were comparable to controls. Chlorophyll content, on a leaf area basis, increased under intense UV-B radiation. This increase was compensated by lower leaf areas, resulting in comparable chlorophyll contents. Similar to growth, also the net photosynthetic rates of sunflower and maize seedlings were reduced down to 29% by intense UV-B calculated on a chlorophyll basis. This reduction was compensated by an increased temperature. Doubling of CO2 concentration had effects only on sunflower seedlings in which the photosynthetic rates were higher than in the controls. Dark respiration rates of the seedlings were not influenced by any experimental condition. Transpiration and water use efficiency (wue) were not influenced by intense UV-B. Higher temperatures led to higher transpiration rates and lower water use efficiencies, resp.. Doubling of CO2 reduced the transpiration rate drastically while for wue maximum values were recorded.  相似文献   
10.
M. Tevini  D. Steinmüller 《Planta》1985,163(1):91-96
The lipid composition of whole leaves and isolated plastoglobul of beech (Fagus sylvatica) has been studied during four natural autumnal senescence stages. Chlorophylls, glycolipids, and phospholipids were extensively degraded in leaves. About 20% of the glycolipids found in leaves during summer, however, remained in the last stage of leaf senescence. Triacylglycerols, also detected in large amounts in summer leaves, were hydrolyzed during senescence. The content of free fatty acids derived from degradation of glycerolipids therefore increased. The total carotenoid and prenyl quinone content was largely unchanged during senescence, except during the last stage investigated, but the reduced forms of prenyl quinones decreased while the oxidized prenyl quinones increased. Plastoglobuli isolated from summer leaves mainly contained triacylglycerols, plastohydroquinone, and -tocopherol. The triacylglycerol content declined in plastoglobuli during senescence. Most of the triacylglycerols must be located outside the plastoglobuli throughout the stages investigated. Carotenoids liberated from thylakoids were esterified and increasingly deposited in plastoglobuli during senescence. In the last senescence stage, carotenoid esters were the main component of plastoglobuli. Prenyl quinones were also transferred into plastoglobuli. Reduced prenyl quinones were sucessively oxidized during senescence and plastoquinone (oxidized) was the predominant prenyl quinone in plastoglobuli isolated from the last senescence stage. The carotenoid and prenyl quinone distribution was identical in leaves and plastoglobuli during late senescence. The main constituents of thylakoids, glycolipids and proteins, were not deposited in plastoglobuli and therefore did not play an important role in plastoglobuli metabolism.Abbreviation PQ plastoquinone  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号