首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  2022年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Myelination is a complex process that requires coordinated Schwann cell-axon interactions during development and regeneration. Positive and negative regulators of myelination have been recently described, and can belong either to Schwann cells or neurons. Vimentin is a fibrous component present in both Schwann cell and neuron cytoskeleton, the expression of which is timely and spatially regulated during development and regeneration. We now report that vimentin negatively regulates myelination, as loss of vimentin results in peripheral nerve hypermyelination, owing to increased myelin thickness in vivo, in transgenic mice and in vitro in a myelinating co-culture system. We also show that this is due to a neuron-autonomous increase in the levels of axonal neuregulin 1 (NRG1) type III. Accordingly, genetic reduction of NRG1 type III in vimentin-null mice rescues hypermyelination. Finally, we demonstrate that vimentin acts synergistically with TACE, a negative regulator of NRG1 type III activity, as shown by hypermyelination of double Vim/Tace heterozygous mice. Our results reveal a novel role for the intermediate filament vimentin in myelination, and indicate vimentin as a regulator of NRG1 type III function.  相似文献   
2.
The bacterial flagellar motor is a rotary motor in the cell envelope of bacteria that couples ion flow across the cytoplasmic membrane to torque generation by independent stators anchored to the cell wall. The recent observation of stepwise rotation of a Na+-driven chimeric motor in Escherichia coli promises to reveal the mechanism of the motor in unprecedented detail. We measured torque-speed relationships of this chimeric motor using back focal plane interferometry of polystyrene beads attached to flagellar filaments in the presence of high sodium-motive force (85 mM Na+). With full expression of stator proteins the torque-speed curve had the same shape as those of wild-type E. coli and Vibrio alginolyticus motors: the torque is approximately constant (at ∼ 2200 pN nm) from stall up to a “knee” speed of ∼ 420 Hz, and then falls linearly with speed, extrapolating to zero torque at ∼ 910 Hz. Motors containing one to five stators generated ∼ 200 pN nm per stator at speeds up to ∼ 100 Hz/stator; the knee speed in 4- and 5-stator motors is not significantly slower than in the fully induced motor. This is consistent with the hypothesis that the absolute torque depends on stator number, but the speed dependence does not. In motors with point mutations in either of two critical conserved charged residues in the cytoplasmic domain of PomA, R88A and R232E, the zero-torque speed was reduced to ∼ 400 Hz. The torque at low speed was unchanged by mutation R88A but was reduced to ∼ 1500 pN nm by R232E. These results, interpreted using a simple kinetic model, indicate that the basic mechanism of torque generation is the same regardless of stator type and coupling ion and that the electrostatic interaction between stator and rotor proteins is related to the torque-speed relationship.  相似文献   
3.
In natural environments, bacteria are frequently exposed to sub‐lethal levels of DNA damage, which leads to the induction of a stress response (the SOS response in Escherichia coli). Natural environments also vary in nutrient availability, resulting in distinct physiological changes in bacteria, which may have direct implications on their capacity to repair their chromosomes. Here, we evaluated the impact of varying the nutrient availability on the expression of the SOS response induced by chronic sub‐lethal DNA damage in E. coli. We found heterogeneous expression of the SOS regulon at the single‐cell level in all growth conditions. Surprisingly, we observed a larger fraction of high SOS‐induced cells in slow growth as compared with fast growth, despite a higher rate of SOS induction in fast growth. The result can be explained by the dynamic balance between the rate of SOS induction and the division rates of cells exposed to DNA damage. Taken together, our data illustrate how cell division and physiology come together to produce growth‐dependent heterogeneity in the DNA damage response.  相似文献   
4.
In Escherichia coli, a sudden increase in external concentration causes a pressure drop across the cell envelope, followed by an active recovery. After recovery, and if the external osmolality remains high, cells have been shown to grow more slowly, smaller, and at reduced turgor pressure. Despite the fact that the active recovery is a key stress response, the nature of these changes and how they relate to each other is not understood. Here, we use fluorescence imaging of single cells during hyperosmotic shocks, combined with custom made microfluidic devices, to show that cells fully recover their volume to the initial, preshock value and continue to grow at a slower rate immediately after the recovery. We show that the cell envelope material properties do not change after hyperosmotic shock, and that cell shape recovers along with cell volume. Taken together, these observations indicate that the turgor pressure recovers to its initial value so that reduced turgor is not responsible for the reduced growth rate observed immediately after recovery. To determine the point at which the reduction in cell size and turgor pressure occurs after shock, we measured the volume of E. coli cells at different stages of growth in bulk cultures. We show that cell volume reaches the same maximal level irrespective of the osmolality of the media. Based on these measurements, we propose that turgor pressure is used as a feedback variable for osmoregulatory pumps instead of being directly responsible for the reduction in growth rates. Reestablishment of turgor to its initial value might ensure correct attachment of the inner membrane and cell wall needed for cell wall biosynthesis.  相似文献   
5.
Many bacterial species swim using flagella. The flagellar motor couples ion flow across the cytoplasmic membrane to rotation. Ion flow is driven by both a membrane potential (V(m)) and a transmembrane concentration gradient. To investigate their relation to bacterial flagellar motor function we developed a fluorescence technique to measure V(m) in single cells, using the dye tetramethyl rhodamine methyl ester. We used a convolution model to determine the relationship between fluorescence intensity in images of cells and intracellular dye concentration, and calculated V(m) using the ratio of intracellular/extracellular dye concentration. We found V(m) = -140 +/- 14 mV in Escherichia coli at external pH 7.0 (pH(ex)), decreasing to -85 +/- 10 mV at pH(ex) 5.0. We also estimated the sodium-motive force (SMF) by combining single-cell measurements of V(m) and intracellular sodium concentration. We were able to vary the SMF between -187 +/- 15 mV and -53 +/- 15 mV by varying pH(ex) in the range 7.0-5.0 and extracellular sodium concentration in the range 1-85 mM. Rotation rates for 0.35-microm- and 1-microm-diameter beads attached to Na(+)-driven chimeric flagellar motors varied linearly with V(m). For the larger beads, the two components of the SMF were equivalent, whereas for smaller beads at a given SMF, the speed increased with sodium gradient and external sodium concentration.  相似文献   
6.
Biofuel alcohols have severe consequences on the microbial hosts used in their biosynthesis, which limits the productivity of the bioconversion. The cell envelope is one of the most strongly affected structures, in particular, as the external concentration of biofuels rises during biosynthesis. Damage to the cell envelope can have severe consequences, such as impairment of transport into and out of the cell; however, the nature of butanol-induced envelope damage has not been well characterized. In the present study, the effects of n-butanol on the cell envelope of Escherichia coli were investigated. Using enzyme and fluorescence-based assays, we observed that 1 % v/v n-butanol resulted in the release of lipopolysaccharides from the outer membrane of E. coli and caused ‘leakiness’ in both outer and inner membranes. Higher concentrations of n-butanol, within the range of 2–10 % (v/v), resulted in inner membrane protrusion through the peptidoglycan observed by characteristic blebs. The findings suggest that strategies for rational engineering of butanol-tolerant bacterial strains should take into account all components of the cell envelope.  相似文献   
7.
We examined the effect of acclimation to moderate hyperthermic environment on the ACTH, TSH, T3, T4 and corticosterone level, as well as the relative weight of hypophysis, thyroid and adrenal glands in streptozotocin-diabetic rats. Increased activity of the hypothalamo-pituitary-adrenocortical (HPA) axis has been demonstrated in diabetic animals, whereas insulin treatment restores the changes. Heat acclimation reduces the level of ACTH and corticosterone in control animals and moderates the hormonal disturbances caused by diabetes. Simultaneously, our study revealed impairment in the activity of the hypothalamo-pituitary-thyroid (HPT) axis. Acclimation to 35±1 °C resulted in significantly lower T3 and T4 levels in control, diabetic and insulin-treated animals. Relative weight of the hypophysis, thyroid and adrenal glands is decreased in heat-acclimated rats. Our assumption is that there might be a cross tolerance between diabetes and heat acclimation on a hormonal level.  相似文献   
8.
The rapid rise in bacterial drug resistance coupled with the low number of novel antimicrobial compounds in the discovery pipeline has led to a critical situation requiring the expedient discovery and characterization of new antimicrobial drug targets. Enzymes in the bacterial fatty acid synthesis pathway, FAS-II, are distinct from their mammalian counterparts, FAS-I, in terms of both structure and mechanism. As such, they represent attractive targets for the design of novel antimicrobial compounds. Enoyl-acyl carrier protein reductase II, FabK, is a key, rate-limiting enzyme in the FAS-II pathway for several bacterial pathogens. The organism, Porphyromonas gingivalis, is a causative agent of chronic periodontitis that affects up to 25% of the US population and incurs a high national burden in terms of cost of treatment. P. gingivalis expresses FabK as the sole enoyl reductase enzyme in its FAS-II cycle, which makes this a particularly appealing target with potential for selective antimicrobial therapy. Herein we report the molecular cloning, expression, purification and characterization of the FabK enzyme from P. gingivalis, only the second organism from which this enzyme has been isolated. Characterization studies have shown that the enzyme is a flavoprotein, the reaction dependent upon FMN and NADPH and proceeding via a Ping-Pong Bi-Bi mechanism to reduce the enoyl substrate. A sensitive assay measuring the fluorescence decrease of NADPH as it is converted to NADP(+) during the reaction has been optimized for high-throughput screening. Finally, protein crystallization conditions have been identified which led to protein crystals that diffract x-rays to high resolution.  相似文献   
9.
10.

Background

The complement system is one of the most potent weapons of innate immunity. It is not only a mechanism for direct protection against invading pathogens but it also interacts with the adaptive immunity to optimize the pathogen-specific humoral and cellular defense cascades in the body. Complement-mediated lysis of HIV is inefficient but the presence of HIV particles results in complement activation by the generation of many C3-fragments, such as C3dg and C3d. It has been demonstrated that activation of complement can enhance HIV infection through the binding of special complement receptor type 2 expression on the surface of mature B cells and follicular dendritic cells.

Presentation of the hypothesis

Previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that a new activator of complement, consisting of a target domain (C3-binding region of complement receptor type 2) linked to a complement-activating human IgG1 Fc domain (CR2-Fc), can target and amplify complement deposition on HIV virions and enhance the efficiency of HIV lysis.

Testing the hypothesis

Our hypothesis was tested using cell-free HIV-1 virions cultivatedin vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified CR2-Fc proteins. As a control group, viruses were incubated with normal human serum under the same conditions. Virus neutralization assays were used to estimate the degree of CR2-Fc-enhanced lysis of HIV compared to untreated virus.

Implications of the hypothesis

The targeted complement activator, CR2-Fc, can be used as a novel approach to HIV therapy by abrogating the complement-enhanced HIV infection of cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号