首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   13篇
  427篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   7篇
  2013年   25篇
  2012年   15篇
  2011年   16篇
  2010年   10篇
  2009年   17篇
  2008年   35篇
  2007年   28篇
  2006年   27篇
  2005年   38篇
  2004年   23篇
  2003年   31篇
  2002年   19篇
  2001年   13篇
  2000年   16篇
  1999年   8篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1988年   7篇
  1987年   5篇
  1986年   8篇
  1985年   4篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
排序方式: 共有427条查询结果,搜索用时 0 毫秒
1.
The formation of effective root nodules on a non-nodulating line (T201) of soybean (Glycine max (L.) Merr.,) was induced by a treatment with 2,4-dichlorophenoxyacetate (2,4-D). The induced nodules, inoculated with mixed Bradyrhizobium japonicum strains A1017 and IRj2101, had a normal internal structure, red in colour and the cells being filled with bacteroids. Externally, the induced nodules were of unusual shape, being paired or gourd-like in form and were attached to thickened roots. The nodules were capable of acetylene reduction (3.1–3.5 moles g-1 fresh weight nodules h-1), allowing the growth of plants with dark green leaves.  相似文献   
2.
Twenty-three rat lung specimens collected in outbreaks of hemorrhagic fever with renal syndrome (HFRS) in three medical institutions were inoculated onto the VERO-E6 cell monolayers. After several blind passages, an agent growing serially in the cell cultures and reacting specifically with known HFRS-positive sera was isolated from two of these specimens. The two isolates were antigenically identical each other. The agent, named strain SR-11, was identified as the causative virus of HFRS by its antigenic identity with E6 cell-adapted HFRS virus, Hantaan 76-118 strain, and the specific reactions with sera from various HFRS cases.  相似文献   
3.
Lipase modulator protein (LimL) of Pseudomonas sp. strain 109.   总被引:1,自引:0,他引:1       下载免费PDF全文
Plasmids containing a Pseudomonas sp. strain 109 extracellular lipase gene (lipL) lacking NH2-terminal sequence and a lipase modulator gene (limL) lacking the NH2-terminal hydrophobic region were constructed and expressed independently in Escherichia coli by using the T7 promoter expression vector system. Recombinant LipL (rLipL) was produced as inclusion bodies, whereas recombinant LimL (rLimL) was present as a soluble protein. During in vitro renaturation of the purified rLipL inclusion bodies after they had been dissolved in 8 M urea, addition of rLimL was essential to solubilize and modulate rLipL. The solubility and activity of rLipL were influenced by the rLimL/rLipL molar ratio; the highest level of solubility was obtained at an rLimL/rLipL ratio of 4:5, whereas the highest activity level was obtained at an rLimL/rLipL ratio of 4:1. After renaturation, rLipL and rLimL were coprecipitated with anti-rLipL antibody, indicating the formation of an rLipL-rLimL complex. Activity of the native lipase purified from Pseudomonas sp. strain 109 was also inhibited by rLimL. By Western blotting (immunoblotting) with anti-rLimL antibody, native LimL was detected in Pseudomonas cells solubilized by sarcosyl treatment. LimL was purified from Pseudomonas sp. strain 109, and the NH2-terminal amino acid sequence was determined to be NH2-Leu-Glu-Pro-Ser-Pro-Ala-Pro-. We propose that to prevent membrane degradation, LimL weakens lipase activity inside the cell, especially in the periplasm, in addition to modulating lipase folding.  相似文献   
4.
Many morphologically similar, but chemically distinct, populations have been found in the marine red alga Laurencia nipponica Yamada (Rhodomelaceae, Ceramiales) growing in Japan. Each chemical type is characterized by a specific end-product of halogenated secondaly metabolite synthesis: chamigrane-type sesquiterpenoids such as prepacifenol and halochamigrene epoxide and C15 bromoethers such as laurencin, laureatin, isoprelaurefucin, epilaurallene, and kumausallene. These seven types of secondary metabolite syntheses remained the same in the wild and under various culture conditions. Because bromoethers and terpenoids are probably synthesized by different metabolic pathways, it is virtually certain that different sets of enzymes participate in their synthesis. Prepacifenol- and laureatin-producing populations were selected as representatives of terpenoid and bromoether groups, respectively. F1 tetrasporophytes derived from crosses between reciprocal, female and male gametophytes of prepacifenol- and laureatin-producing strains bore both types of metabolites, suggesting that the genes Producing these enzyme systems are encoded by nuclear genomes. The F1 gametophytes resulting from the reciprocal crosses produced either prepacifenol or laureatin, and the four individuals derived from spore tetrads (a set of tetraspores derived from a single tetrasporangium) produced either prepacifenol or laureatin in a 1:1 ratio, indicating that genes participating in terpenoid synthsis and those participating in bromoether synthesis are on different loci of homologous chromosomes and are segregated at meiosis (tetrasporogenesis). One individual of this interpopulational F1 gamtophyte produced both parental types of metabolite, perhaps indicating the occurrence of a recombination type. Natural hybrid individuals, including such recombination-type gametophytes, were found in a sympatric locality at which these two chemical types occur. F1 tetrasporophytes derived from crosses between respective prepacifenol- and laureatin-producing strains and their F1 gametohytes produced only parental-type metabolite-producing plants. These results indicate that the diverse chemical types can be referred to as races (chemical races).  相似文献   
5.
6.
7.
Given their sessile nature, land plants must use various mechanisms to manage dehydration under water‐deficit conditions. Osmostress‐induced activation of the SNF1‐related protein kinase 2 (SnRK2) family elicits physiological responses such as stomatal closure to protect plants during drought conditions. With the plant hormone ABA receptors [PYR (pyrabactin resistance)/PYL (pyrabactin resistance‐like)/RCAR (regulatory component of ABA receptors) proteins] and group A protein phosphatases, subclass III SnRK2 also constitutes a core signaling module for ABA, and osmostress triggers ABA accumulation. How SnRK2 is activated through ABA has been clarified, although its activation through osmostress remains unclear. Here, we show that Arabidopsis ABA and abiotic stress‐responsive Raf‐like kinases (AtARKs) of the B3 clade of the mitogen‐activated kinase kinase kinase (MAPKKK) family are crucial in SnRK2‐mediated osmostress responses. Disruption of AtARKs in Arabidopsis results in increased water loss from detached leaves because of impaired stomatal closure in response to osmostress. Our findings obtained in vitro and in planta have shown that AtARKs interact physically with SRK2E, a core factor for stomatal closure in response to drought. Furthermore, we show that AtARK phosphorylates S171 and S175 in the activation loop of SRK2E in vitro and that Atark mutants have defects in osmostress‐induced subclass III SnRK2 activity. Our findings identify a specific type of B3‐MAPKKKs as upstream kinases of subclass III SnRK2 in Arabidopsis. Taken together with earlier reports that ARK is an upstream kinase of SnRK2 in moss, an existing member of a basal land plant lineage, we propose that ARK/SnRK2 module is evolutionarily conserved across 400 million years of land plant evolution for conferring protection against drought.  相似文献   
8.
9.
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.  相似文献   
10.
We have developed chemically modified siRNAs and miRNAs bearing urea/thiourea-bridged aromatic compounds at their 3′-end for RNAi therapy. Chemically modified RNAs possessing urea/thiourea-bridged aromatic compounds instead of naturally occurring dinucleotides at the 3′-overhang region were easily prepared in good yields and were more resistant to nucleolytic hydrolysis than unmodified RNA. siRNAs containing urea or thiourea derivatives showed the desired knockdown effect. Furthermore, modified miR-143 duplexes carrying the urea/thiourea compounds in the 3′-end of each strand were able to inhibit the growth of human bladder cancer T24 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号