首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  2017年   1篇
  2012年   2篇
  2011年   1篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 375 毫秒
1
1.
Because of technical challenges very little is known about absolute myocardial perfusion in humans in vivo during physical exercise. In the present study we applied positron emission tomography (PET) in order to 1) investigate the effects of dynamic bicycle exercise on myocardial perfusion and 2) clarify the possible effects of endurance training on myocardial perfusion during exercise. Myocardial perfusion was measured in endurance-trained and healthy untrained subjects at rest and during absolutely the same (150 W) and relatively similar [70% maximal power output (W(max))] bicycle exercise intensities. On average, the absolute myocardial perfusion was 3.4-fold higher during 150 W (P < 0.001) and 4.9-fold higher during 70% W(max) (P < 0.001) than at rest. At 150 W myocardial perfusion was 46% lower in endurance-trained than in untrained subjects (1.67 +/- 0.45 vs. 3.00 +/- 0.75 ml x g(-1) x min(-1); P < 0.05), whereas during 70% W(max) perfusion was not significantly different between groups (P = not significant). When myocardial perfusion was normalized with rate-pressure product, the results were similar. Thus, according to the present results, myocardial perfusion increases in parallel with the increase in working intensity and in myocardial work rate. Endurance training seems to affect myocardial blood flow pattern during submaximal exercise and leads to more efficient myocardial pump function.  相似文献   
2.
The benefits of α‐mangostin for various tissues have been reported, but its effect on the heart has not been clarified. This study aimed to evaluate the effects of α‐mangostin on cardiac function. Using a cardiac sarcoplasmic reticulum (SR) membrane preparation, α‐mangostin inhibited SR Ca2+‐ATPase activity in a dose‐dependent manner (IC50 of 6.47 ± 0.7 μM). Its suppressive effect was specific to SR Ca2+‐ATPase but not to myofibrillar Ca2+‐ATPase. Using isolated cardiomyocytes, 50 μM of α‐mangostin significantly increased the duration of cell relengthening and increased the duration of Ca2+ transient decay, suggesting altered myocyte relaxation. The relaxation effect of α‐mangostin was also supported in vivo after intravenous infusion. A significant suppression of both peak pressure and rate of ventricular relaxation (–dP/dt) relative to DMSO infusion was observed. The results from the present study demonstrated that α‐mangostin exerts specific inhibitory action on SR Ca2+‐ATPase activity, leading to myocardial relaxation dysfunction.  相似文献   
3.
A decrease in peak early diastolic filling velocity in postmenopausal women implies a sex hormone-related diastolic dysfunction. The regulatory effect of female sex hormones on cardiac distensibility therefore was evaluated in ovariectomized rats by determining the sarcomere length-passive tension relationship of ventricular skinned fiber preparations. Diabetes also was induced in the rat to assess the protective significance of female sex hormones on diastolic function. While ovariectomy had no effect on myocardial stiffness, collagen content, or titin ratio, a significant increase in myocardial stiffness was observed in diabetic rat only when female sex hormones were intact. The increased stiffness in diabetic-sham rats was accompanied by an elevated collagen content resulting from increases in the levels of procollagen and Smad2. Surprisingly, the increased myocardial stiffness in diabetic-sham rats was accompanied by a shift toward a more compliant N2BA of cardiac titin isoforms. The pCa-active tension relationship was analyzed at fixed sarcomere lengths of 2.0 and 2.3 μm to determine the magnitude of changes in myofilament Ca(2+) sensitivity between the two sarcomere lengths. Interestingly, high expression of N2BA titin was associated with a suppressed magnitude of changes in myofilament Ca(2+) sensitivity only in the diabetic-ovariectomized condition. Estrogen supplementation in diabetic-ovariectomized rats partially increased myocardial stiffness but completely reversed the change in myofilament Ca(2+) sensitivity. These results indicate a restrictive adaptation of myocardium governed by female sex hormones to maintain myofilament activity in compensation to the pathophysiological induction of cardiac dilatation by the diabetic condition.  相似文献   
4.
Numerous studies have aimed to elucidate markers for the onset of decompensatory hypertrophy and heart failure in vivo and in vitro. Alterations in the force-frequency relationship are commonly used as markers for heart failure with a negative staircase being a hallmark of decompensated cardiac function. Here we aim to determine the functional and molecular alterations in the very early stages of compensatory hypertrophy through analysis of the force-frequency relationship, using a novel isolated muscle culture system that allows assessment of force-frequency relationship during the development of hypertrophy. New Zealand white male rabbit trabeculae excised from the right ventricular free wall were utilized for all experiments. Briefly, muscles held at constant preload and contracting isometrically were stimulated to contract in culture for 24 h, and in a subset up to 48 h. We found that, upon an increase in the preload and maintaining the muscles in culture for up to 24 h, there was an increase in baseline force produced by isolated trabeculae over time. This suggests a gradual compensatory response to the impact of increased preload. Temporal analysis of the force-frequency response during this progression revealed a significant blunting (at 12 h) and then reversal of the positive staircase as culture time increased (at 24 h). Phosphorylation analysis revealed a significant decrease in desmin and troponin (Tn)I phosphorylation from 12 to 24 h in culture. These results show that even very early on in the compensatory hypertrophy state, the force-frequency relationship is already affected. This effect on force-frequency relationship may, in addition to protein expression changes, be partially attributed to the alterations in myofilament protein phosphorylation.  相似文献   
5.
Hydroxyl radicals (*OH) are involved in the pathogenesis of ischemia-reperfusion injury and are observed in clinical situations, including acute heart failure, stroke, and myocardial infarction. Acute transient exposure to *OH causes an intracellular Ca(2+) overload and leads to impaired contractility. We investigated whether upregulation of sarcoplasmic reticulum Ca(2+)-ATPase function (SERCA) can attenuate *OH-induced dysfunction. Small, contracting right ventricular papillary muscles from wild-type (WT) SERCA1a-overexpressing (transgenic, TG) and SERCA2a heterogeneous knockout (HET) mice were directly exposed to *OH. This brief 2-min exposure led to a transient elevation of diastolic force (F(dia)) and depression of developed force (F(dev)). In WT mice, F(dia) increased to 485 +/- 49% and F(dev) decreased to 11 +/- 3%. In sharp contrast, in TG mice F(dia) increased only to 241 +/- 17%, whereas F(dev) decreased only to 51 +/- 5% (P < 0.05 vs. WT). In HET mice, F(dia) rose more than WT (to 597 +/- 20%, P < 0.05), whereas F(dev) was reduced in a similar amount. After approximately 45 min after *OH exposure, a new steady state was reached: F(dev) returned to 37 +/- 6% and 32 +/- 6%, whereas F(dia) came back to 238 +/- 28% and 292 +/- 17% in WT and HET mice, respectively. In contrast, the sustained dysfunction was significantly less in TG mice: F(dia) and F(dev) returned to 144 +/- 20% and 67 +/- 6%, respectively. Before exposure to *OH, there is decrease in phospholamban (PLB) phosphorylation at Ser16 (pPLBSer16) and PLB phosphorylation at Thr17 (pPLBThr17) in TG mice and an increase in pPLBSer16 and pPLBThr17 in HET mice versus WT. After exposure to *OH there is decrease in pPLBSer16 in WT, TG, and HET mice but no significant change in the level of pPLBThr17 in any group. The results indicate that SERCA overexpression can reduce the *OH-induced contractile dysfunction in murine myocardium, whereas a reduced SR Ca(2+)-ATPase activity aggravates this injury. Loss of pPLB levels at Ser16 likely amplifies the differences observed in injury response.  相似文献   
6.
To study myocardial hypertrophy under in vitro conditions, we developed an experimental system and protocol in which mechanical conditions of isolated multicellular myocardium can be controlled while function can be continuously assessed. This in vitro culture system now allows us to investigate how mechanical overload impacts on cardiac hypertrophy in the absence of systemic factors. In this system, small right ventricular rabbit trabeculae were subjected to different modes of mechanical load, while being electrically stimulated to contract at 1 Hz at 37 degrees C. Muscles subjected to prolonged isometric contractions at high, but physiological, pre- and afterload showed a rapid induction of cardiac hypertrophy; overall muscle diameter increased by 4.3 +/- 1.4 and 17.9 +/- 4.0% after 24 and 48 h, respectively. This finding was confirmed at the cellular level; individual myocyte width significantly increased after 24 and 48 h. In muscles subjected to a low preload, or in the absence of afterload, this hypertrophic response was absent. Functionally, after 24 h of isometric contractions at high load, active developed tension had gradually increased to 168 +/- 22% of starting values. Proteomic analysis of this cultured myocardium demonstrated reproducible changes in the protein expression pattern and included an upregulation of myofilament proteins, myosin light chain isoforms, alpha-b crystalline, and breast cancer 1 protein, and a downregulation of myoglobin. We conclude that multicellular myocardium can be stressed to undergo rapid hypertrophy in vitro, and changes in function and protein expression can be investigated during the transition from healthy myocardium to early hypertrophy.  相似文献   
7.
The risks associated with hormone replacement therapy, especially cardiac diseases in postmenopausal women, have prompted extensive studies for other preventive or therapeutic alternatives. We investigated the cardioprotective effects of exercise training on the changes in cardiac myofilament Ca2+ activation in 10-wk-old ovariectomized rats. The exercise groups were subjected to a 9-wk running program on a motor-driven treadmill 1 wk after surgery. The relationship between pCa (-log molar free Ca2+ concentration) and myofibrillar MgATPase activity of exercise-sham myofibrils or exercise-ovariectomized myofibrils was the same and could not be distinguished from that of sedentary-sham control hearts. In contrast, a significant suppression in maximum MgATPase activity and a leftward shift of pCa50 (half-maximally activating pCa) in the pCa-ATPase activity relationship were detected in sedentary-ovariectomized rats. Exercise training also prevented the shift in myosin heavy chain (MHC) isoforms toward beta-MHC in ovariectomized hearts. The upregulation of beta1-adrenergic receptors in the left ventricular membranes of ovariectomized rat hearts, as measured by receptor binding and immunoblot analyses, was no longer observed in exercise-ovariectomized hearts. Immunoblot analyses of heat shock protein (HSP) 72, an inducible form of HSP70, demonstrated a significant downregulation in ovariectomized hearts. Exercise training in ovariectomized rats completely reversed the expression of HSP72 to the same level as sham controls. Our results clearly indicate the cardioprotective effects of exercise training on changes in cardiac myofilament Ca2+ activation in ovariectomized rats. Alterations in expression of beta1-adrenergic receptors and HSP72 may, in part, play a mechanistic role in the cardioprotective effects.  相似文献   
8.
Endothelin (ET-1) is a peptide hormone mediating a wide variety of biological processes and is associated with development of cardiac dysfunction. Generally, ET-1 is regarded as a molecular marker released only in correlation with the observation of a hypertrophic response or in conjunction with other hypertrophic stress. Although the cardiac hypertrophic effect of ET-1 is demonstrated, inotropic properties of cardiac muscle during chronic ET-1-induced hypertrophy remain largely unclear. Through the use of a novel in vitro multicellular culture system, changes in contractile force and kinetics of rabbit cardiac trabeculae in response to 1 nM ET-1 for 24 hours can be observed. Compared to the initial force at t = 0 hours, ET-1 treated muscles showed a ∼2.5 fold increase in developed force after 24 hours without any effect on time to peak contraction or time to 90% relaxation. ET-1 increased muscle diameter by 12.5±3.2% from the initial size, due to increased cell width compared to non-ET-1 treated muscles. Using specific signaling antagonists, inhibition of NCX, CaMKII, MAPKK, and IP3 could attenuate the effect of ET-1 on increased developed force. However, among these inhibitions only IP3 receptor blocker could not prevent the increase muscle size by ET-1. Interestingly, though calcineurin-NFAT inhibition could not suppress the effect of ET-1 on force development, it did prevent muscle hypertrophy. These findings suggest that ET-1 provokes both inotropic and hypertrophic activations on myocardium in which both activations share the same signaling pathway through MAPK and CaMKII in associated with NCX activity.  相似文献   
9.
Alterations in the intracellular Ca2+ handling in cardiomyocytes may underlie the cardiac dysfunction observed in the ovarian sex hormone-deprived condition. To test the hypothesis that ovarian sex hormones had a significant role in the cardiac intracellular Ca2+ mobilization, the sarcoplasmic reticulum (SR) Ca2+ uptake and SR Ca2+-ATPase (SERCA) activity were determined in 10-wk ovariectomized rat hearts. With the use of left ventricular homogenate preparations, a significant suppression of maximum SR Ca2+ uptake activity, but with an increase in SR Ca2+ responsiveness, was demonstrated in ovariectomized hearts. In parallel measurements of SERCA activity in SR-enriched membrane preparations from ovariectomized hearts, a suppressed maximum SERCA activity with a leftward shift in the relationship between pCa (-log molar free Ca2+ concentration) and SERCA activity was also detected. A significant downregulation of SERCA proteins and reduction in the SERCA mRNA level were observed in association with suppressed maximum SERCA activity. While there were no changes in total phospholamban and phosphorylated Ser16 phospholamban levels, a decrease in phosphorylated Thr17 phospholamban as well as an increase in the suprainhibitory, monomeric form of phospholamban stoichiometry was found. Estrogen and progesterone supplementations were equally effective in preventing changes in ovariectomized hearts. Our data showed for the first time that female sex hormones played an important role in the regulation of the cardiac SR Ca2+ uptake. Under hormone-deficient conditions, there was an adaptive response of SERCA that escaped the regulatory effect of phospholamban.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号