首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   2篇
  27篇
  2022年   2篇
  2021年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2007年   3篇
  2006年   2篇
  2002年   1篇
  2001年   1篇
  1997年   2篇
  1996年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
Deprivation of nitrogen (N) increases assimilate partitioning towards roots at the expense of that to shoots. This study was done to determine the physiological basis of increased root growth of tea (sCammellia sinensis L.) under N shortage. Nine-month-old clonal tea (clone TRI2025) was grown in quartz sand under naturally lit glasshouse conditions. Three levels of N (0, 3.75 and 7.5 mM N) were incorporated in to the nutrient solution and applied daily. Plant growth, photosynthesis, root respiration and plant N contents were measured at 10-day intervals over a 45-day period. Root dry weight showed a sharp increase during the first 15 days after the plants were transferred to 0 mM N, whereas no such increase was shown in plants transferred to 7.5 mM N. In contrast, shoot dry weight increased at 7.5 mM N and was significantly greater than at 0 mM N, where no increase was observed. Due to the above changes, root weight ratio increased and leaf weight ratio decreased during the first 15 days of N deprivation. Leaf photosynthetic rates did not vary between N levels during the initial 15-day period. Thereafter, photosynthetic rates were greater at 7.5 mM and 3.75 mM N than at 0 mM N. Root respiration rate decreased at 0 mM N, whereas it increased at 3.75 and 7.5 mM N, probably because of the greater respiratory cost for nitrate uptake. Root respiratory costs associated with maintenance (R m) and nitrate uptake (R u) were calculated to investigate whether the sharp increase of root growth observed upon nitrogen deprivation was solely due to the reduced respiratory costs for nitrate uptake. The estimated values for R m and R u were 3.241 × 10–4 mol CO2 g–1 (root dry matter) s–1 and 0.64 mol CO2 (mol N)–1, respectively. Calculations showed that decreased respiratory costs for nitrate uptake could not solely account for the significant increase of root biomass upon N deprivation. Therefore, it is concluded that a significant shift in assimilate partitioning towards roots occurs immediately following N deprivation in tea.  相似文献   
2.
Although differences in canopy openness, herbivory and their interaction may promote species coexistence, how these factors affect pioneer tree species and potentially limit growth, and survival has been poorly studied, particularly in tropical South Asia. We monitored the effect of canopy openness and herbivore damage on seedling survival and growth of 960 individuals of six pioneer tree species: Dillenia triquetra, Macaranga indica, Macaranga peltata, Schumacheria castaneifolia, Trema orientalis, and Wendlandia bicuspidata. Seedlings were placed in four gap‐understory positions—center, outer gap edge, inner forest edge, and understory—in four large, natural gaps within the Sinharaja World Heritage Reserve, Sri Lanka. Canopy openness positively affected survival probability beyond the 550‐d experiment, while herbivory decreased survival and was highest in understory conditions. The relative order of species survival stayed fairly consistent between gap‐understory positions and followed their known shade tolerance rankings. When averaged across all experimental conditions, T. orientalis had the lowest survival probability estimate beyond the 550‐d experiment (0.05), but the greatest capacity for growth where it successfully established, while the species with highest averaged survival probability (0.79), D. triquetra, showed the lowest growth. One species, W. bicuspidata, responded positively to herbivory by re‐sprouting. Coexistence of D. triquetra, T. orientalis, and W. bicuspidata can be explained by a trade‐off among species in survival, growth, and response to herbivory. In addition to variation in canopy light environment, herbivory may be important in determining pioneer species distribution through fine‐scale niche partitioning and should be carefully considered in reforestation efforts.  相似文献   
3.
Most mistletoe–host ecophysiological studies have paid attention to the influence of parasites on host performance. This paper explored the impact of varying hosts on the photosynthesis of a single mistletoe species. Here, we studied an obligate xylem‐tapping tropical mistletoe (Dendrophthoe curvata (Blume) Miquel) parasitizing four different hosts (Acacia auriculiformis A. Cunn. Ex Benth, Andira inermis (W. Wright) DC., Mangifera indica L. and Vitex pinnata L.) in a homo geneous tropical heath forest patch in Brunei Darussalam. We compared photosynthetic capacity and photosynthesis‐related characteristics of the mistletoe on four different hosts to evaluate the overall impact of hosts on the parasite. Results showed that the mistletoe–host patterns of CO2 assimilation rates, transpiration rates and water use efficiency varied significantly based on the host. In the D. curvata–Vitex pinnata association, the mistletoe exhibited significantly lower CO2 assimilation rates but showed no significant variations in transpiration rates and water use efficiency when compared to the host. In D. curvata–Andira inermis and D. curvata–Mangifera indica associations, the mistletoe showed significantly higher photosynthetic rates than the hosts, whereas in the D. curvata–Acacia auriculiformis association, there was no significant difference in photosynthetic rates between the counterparts. Host specificity also significantly influenced some mistletoe photosynthetic parameters such as light saturated photosynthesis, specific leaf area, leaf chlorophyll content, CO2 assimilation rates, stomatal conductance, transpiration rates and water use efficiency. Different tree hosts intrinsically offer different resources to their obligate mistletoe parasites based on their physiology and environmental parameters. We argue that host‐specific responses have driven these intra‐specific variations in mistletoe physiology. This study provides background for future investigation on potential host‐regulated mechanisms that drive functional changes in host‐dependent mistletoes.  相似文献   
4.
In the setting of autoimmunity, one of the goals of successful therapeutic immune modulation is the induction of peripheral tolerance, a large part of which is mediated by regulatory/suppressor T cells. In this report, we demonstrate a novel immunomodulatory mechanism by an FDA-approved, exogenous peptide-based therapy that incites an HLA class I-restricted, cytotoxic suppressor CD8+ T cell response. We have shown previously that treatment of multiple sclerosis (MS) with glatiramer acetate (GA; Copaxone) induces differential up-regulation of GA-reactive CD8+ T cell responses. We now show that these GA-induced CD8+ T cells are regulatory/suppressor in nature. Untreated patients show overall deficit in CD8+ T cell-mediated suppression, compared with healthy subjects. GA therapy significantly enhances this suppressive ability, which is mediated by cell contact-dependent mechanisms. CD8+ T cells from GA-treated patients and healthy subjects, but not those from untreated patients with MS, exhibit potent, HLA class I-restricted, GA-specific cytotoxicity. We further show that these GA-induced cytotoxic CD8+ T cells can directly kill CD4+ T cells in a GA-specific manner. Killing is enhanced by preactivation of target CD4+ T cells and may depend on presentation of GA through HLA-E. Thus, we demonstrate that GA therapy induces a suppressor/cytotoxic CD8+ T cell response, which is capable of modulating in vivo immune responses during ongoing therapy. These studies not only explain several prior observations relating to the mechanism of this drug but also provide important insights into the natural immune interplay underlying this human immune-mediated disease.  相似文献   
5.
Synthesis and antibacterial activity of C6-carbazate ketolides   总被引:1,自引:0,他引:1  
A novel series of ketolides containing heteroaryl groups that are linked to the erythronolide ring via a C6-carbazate functionality has been successfully synthesized. Careful modulation of the heteroaryl groups, the length and degree of saturation of the C6-carbazate linker, and the substituents present on each of the carbazate nitrogens led to compounds with potent activity against key bacterial respiratory pathogens. The best analogs of this series had in vitro and in vivo (sc dosing) profiles that were comparable to telithromycin.  相似文献   
6.
Solution structures of DNA/RNA hybrid duplexes, d(GCGCA*AA*ACGCG): r(cgcguuuugcg)d(C) (designated PP57), containing two C8-propynyl 2′-deoxyadenosines (A*) and unmodified hybrid (designated U4A4) are solved. The C8-propynyl groups on 2′-deoxyadenosine perturb the local structure of the hybrid duplex, but overall the structure is similar to that of canonical DNA/RNA hybrid duplex except that Hoogsteen hydrogen bondings between A* and U result in lower thermal stability. RNase H is known to cleave RNA only in DNA/RNA hybrid duplexes. Minor groove widths of hybrid duplexes, sugar puckerings of DNA are reported to be responsible for RNase H mediated cleavage, but structural requirements for RNase H mediated cleavage still remain elusive. Despite the presence of bulky propynyl groups of PP57 in the minor groove and greater flexibility, the PP57 is an RNase H substrate. To provide an insight on the interactions between RNase H and substrates we have modeled Bacillus halodurans RNase H-PP57 complex, our NMR structure and modeling study suggest that the residue Gly(15) and Asn(16) of the loop residues between first β sheet and second β sheet of RNase HI of Escherichia coli might participate in substrate binding.  相似文献   
7.
The morphology of the hypogeous root holoparasite Hydnora triceps is highly reduced, and as with many holoparasites, the vegetative body is difficult to interpret. The vegetative body of H. triceps has been historically considered a "pilot root" studded with lateral appendages known as "haustorial roots." We found the vegetative body of H. triceps to consist of a rhizome with a thickened root-cap-like structure that covered a vegetative shoot apical meristem. From the apical meristem, procambial strands originated and developed into endarch collateral vascular bundles arranged radially around a pith without an interfascicular cambium. Xylem vessels had scalariform pitting and simple perforation plates. A continuous periderm without root hairs was observed. Increase in girth was attributed to cork and fascicular cambia. "Haustorial roots" or bumps on the surface of the vegetative body were exogenous, contained meristems and were the origins of vegetative branching, budding, and haustoria. The haustoria of H. triceps were cylindrical and penetrated the host root stele. Phloem and xylem elements were observed within the endophyte, and direct xylem to host-xylem contacts were observed. The arrangement of vascular tissues and xylem anatomy of H. triceps are likely plesiomorphic features in light of Hydnoraceae's placement in the Piperales.  相似文献   
8.
Structural variations (SVs) play a crucial role in genetic diversity. However, the alignments of reads near/across SVs are made inaccurate by the presence of polymorphisms. BatAlign is an algorithm that integrated two strategies called ‘Reverse-Alignment’ and ‘Deep-Scan’ to improve the accuracy of read-alignment. In our experiments, BatAlign was able to obtain the highest F-measures in read-alignments on mismatch-aberrant, indel-aberrant, concordantly/discordantly paired and SV-spanning data sets. On real data, the alignments of BatAlign were able to recover 4.3% more PCR-validated SVs with 73.3% less callings. These suggest BatAlign to be effective in detecting SVs and other polymorphic-variants accurately using high-throughput data. BatAlign is publicly available at https://goo.gl/a6phxB.  相似文献   
9.
A plant parasite parasitizing another plant parasite is known as a hyperparasite. Information is scarce regarding the ecophysiology of hyperparasites and their hosts despite their potential to illuminate processes of host–parasite solute flux. Here we present mineral profiles and stable isotopic data for two associations of the hyperparasite Viscum articulatum and its primary mistletoe and tree hosts. Acting as the terminal sink, the hyperparasite had consistently higher contents of all major and minor elements evaluated compared to the primary parasite and the proximal portion of the tree host branch. The primary parasite had lower contents of Cu, Mg, Mn, N, and Z relative to the proximal portion of the tree host branch, suggesting nutritional stress applied by the hyperparasite. Interestingly Fe and Cu showed no consistent pattern between host and primary parasite, while the osmotically active elements P and K increased from tree host, to primary mistletoe, and finally the hyperparasitic mistletoe. The δ13C partitioning patterns for hyperparasites, primary parasites, and hosts were non‐linear in contrast to linear patterns reported from the literature for autoparasitic mistletoe associations, demonstrating fundamental differences between nutrition in hyperparasites and autoparasites.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号