首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   11篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2015年   5篇
  2014年   5篇
  2013年   7篇
  2012年   7篇
  2011年   4篇
  2010年   5篇
  2009年   6篇
  2008年   4篇
  2006年   5篇
  2005年   8篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   9篇
  1998年   6篇
  1997年   1篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   6篇
  1988年   2篇
  1987年   6篇
  1986年   8篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   7篇
  1981年   9篇
  1980年   5篇
  1979年   12篇
  1978年   11篇
  1977年   5篇
  1976年   2篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1969年   2篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
1.
How Can the Eco‐efficiency of a Region be Measured and Monitored?   总被引:2,自引:0,他引:2  
The concept of eco-efficiency is commonly referred to as a business link to sustainable development. In this article, ecoefficiency is examined at a regional level as an approach to promoting the competitiveness of economic activities in the Finnish Kymenlaakso region and mitigating their harmful impacts on the environment. The aim is to develop appropriate indicators for monitoring changes in the eco-efficiency of the region. A starting point is to produce indicators for the environmental and economic dimensions of regional development and use them for measuring regional eco-efficiency. The environmental impact indicators are based on a life-cycle assessment method, producing different types of environmental impact indicators: pressure indicators (e.g., emissions of CO2), impact category indicators (e.g., CO2 equivalents in the case of climate change), and a total impact indicator (aggregating different impact category indicator results into a single value). Environmental impact indicators based on direct material input, total material input, and total material requirement of the Kymenlaakso region are also assessed. The economic indicators used are the gross domestic product, the value added, and the output of the main economic sectors of Kymenlaakso. In the eco-efficiency assessment, the economic and environmental impact indicators are monitored in the same graph. In a few cases eco-efficiency ratios can also be calculated (the economic indicators are divided by the environmental indicators). Output (= value added + intermediate consumption) is used as an economic indicator related to the environmental impact indicators, which also cover the upstream processes of the region's activities. In the article, we also discuss the strengths and weaknesses of using the different environmental impact indicators.  相似文献   
2.
Summary During five different periods between Nov. 1982 and Aug. 1983, the diurnal patterns exhibited in photosynthetic CO2 uptake and stomatal conductance were observed under natural conditions on twigs of Cistus salvifolius, a Mediterranean semi-deciduous shrub which retains a significant proportion of its leaves through the summer drought. During the same periods, net photosynthesis at saturating CO2 partial pressure was measured on the same twigs as a function of irradiance at different temperatures. From these data, photosynthetic capacity, defined here as the CO2- and light-saturated net photosynthesis rate, was obtained as a function of leaf temperature. C. salvifolius is a winter growing species, shoot growth being initiated in Nov. and continuing through May. Photosynthetic capacity was quite high in Nov., March and June, exceeding 40 mol m-2 s-1 at optimum temperature. In Dec., photosynthetic capacity was somewhat reduced, perhaps due to low night-time temperatures (<5°C) during the measurement period. In Aug., capacity in oversummering shoots at optimum temperature fell to less than 8 mol m-2 s-1, due to water trees and perhaps leaf aging. Seasonal changes in maximal photosynthetic rates under ambient conditions were similar, and like those found in co-occurring evergreen sclerophylls. Like the evergreens, Cistus demonstrated considerable stomatal control of transpirational water loss, particularly in oversummering leaves. During each measurement period except Aug. when capacity was quite low, the maximum rates of net photosynthesis measured under ambient conditions were less than half the measured photosynthetic capacities at comparable temperatures, suggesting an apparent excess nitrogen investment in the photosynthetic apparatus.  相似文献   
3.
Gas exchange studies in two Portuguese grapevine cultivars   总被引:8,自引:0,他引:8  
Gas exchange characteristics of leaves of Vitis vinifera L. cvs Tinta Amarela and Periquita, two grapevine cultivars grown in distinct climatic regions of Portugal, were studied under natural and controlled conditions. Daily time courses of gas exchange were measured on both a hot, sunny day and a cooler, partly cloudy day. Responses of net photosynthesis to irradiance and internal partial pressure of CO2, were also obtained. A strong correlation between net photosynthesis (PN) and leaf conductance (gs) was found during the diurnal time courses of gas exchange, as well as a relatively constant internal partial pressure of CO2 (Pi), even under non-steady-state conditions. On the cloudless day, both PN and gs were lower in the afternoon than in the morning, despite similar conditions of leaf temperature, air to leaf water vapor deficit and irradiance. The response curves of net photosynthesis to internal CO2 showed linearity up to pi values of 50 Pa, possibly indicating a substantial excess of photosynthetic capacity. When measured at low partial pressures of O2 (1 kPa), PN became inhibited at high CO2 levels. Inhibition of PN at high CO2 was absent under normal levels of O2 (21 kPa). Significant differences in gas exchange characteristics were found between the two cultivars, with T. Amarela having higher rates under similar measurement conditions. In particular, the superior performance of T. Amarela at high temperatures may represent adaptation to the warmer conditions at its place of origin.  相似文献   
4.
Summary In the foothills of the Philip Smith Mountains, Brooks Range, Alaska, tussock tundra occurs on rolling hills and in valleys that were shaped by Pleistocene glaciations. During the 1986 and 1987 summer seasons, Sphagnum growth and production were determined in water tracks on tundra slopes that acted to channel water flow to the valley bottom stream and in intertrack tundra areas that were relatively homogeneous with respect to downslope drainage. Measurements were made under ambient environmental conditions and on mosses receiving supplemental irrigation in each area. Growth rate for Sphagnum spp. (cm shoot length increase/day) was low and relatively constant in intertrack tundra and highest but quite variable in water tracks. A strong negative correlation was found between Sphagnum spp. growth rate and solar irradiance in the shady environment below Salix canopies in the water tracks. Estimates of net annual dry weight (DW) production for Sphagnum spp. ranged from 0.10 g DW dm-2 yr-1 in intertrack tundra vegetation to 1.64 g DW dm-2 yr-1 in well-shaded water tracks. Experimental water additions had little effect on growth and production in intertrack tundra and well-developed water tracks, but significantly increased growth in a weakly-developed water track community. Low production over large areas of tundra slopes may occur due to presence of slow growing species resistant to dessication in intertrack tundra as opposed to rapidly growing less compact species within the limited extent of water tracks. We hypothesize that species capable of rapid growth occur also in weakly-developed water tracks, and that these are water-limited more often than plants occurring in well-developed water track situations. Where experienced, high light intensity may additionally limit growth due to photoinhibition.  相似文献   
5.
6.
The effect of temperature on photosynthesis at constant water-vapor pressure in the air was investigated using two sclerophyll species, Arbutus unedo and Quercus suber, and one mesophytic species, Spinacia oleracea. Photosynthesis and transpiration were measured over a range of temperatures, 20–39° C. The external concentration of CO2 was varied from 340 bar to near CO2 compensation. The initial slope (carboxylation efficiency, CE) of the photosynthetic response to intercellular CO2 concentration, the CO2 compensation point (), and the extrapolated rate of CO2 released into CO2-free air (R i) were calculated. At an external CO2 concentration of 320–340 bar CO2, photosynthesis decreased with temperature in all species. The effect of temperature on was similar in all species. While CE in S. oleracea changed little with temperature, CE decreased by 50% in Q. suber as temperature increased from 25 to 34° C. Arbutus unedo also exhibited a decrease in CE at higher temperatures but not as marked as Q. suber. The absolut value of R i increased with temperature in S. oleracea, while changing little or decreasing in the sclerophylls. Variations in and R i of the sclerophyll species are not consistent with greater increase of respiration with temperature in the light in these species compared with S. oleracea.Abbreviations and symbols A net photosynthetic rate - C and C i CO2 concentration in the air and in the intercellular airspace of the leaf, respectively - CE carboxylation efficiency - E transpiration rate - R i CO2 release into CO2-free air estimated from extrapolation to 0 bar CO2 - T i leaf temerature - VPD difference in water-vapor pressure between mesophyll and air - CO2 compensation point  相似文献   
7.
8.
9.
Summary Endogenous abscisic acid content (ABA) of Arbutus unedo leaves growing under natural conditions in a macchia near Sobreda, Portugal, was very high (0.25 to 2.3 g g1 fresh weight). Highest concentrations were found during the very early morning hours and at midday. During the late morning hours and in the late afternoon ABA concentrations decreased to between one-third and one-fourth of peak values. The samples for ABA content were obtained from both irrigated ( between-10 and-25 bar) and non-irrigated plants experiencing natural water stress during the dry season ( of-50 bar). During the course of the measurement day, stomatal conductance was relatively constant and conductance of watered plants was 50 to 100% greater than that of unwatered plants. No clear correlations between ABA content and stomatal conductance and/or xylem water potential were observed. Despite large differences in water potential and differences in degree of stomatal opening, absolute concentrations of ABA were not found to differ.Small quantities (8–14 pmoles cm2 leaf area) of ABA were applied to leaves of irrigated and non-irrigated Arbutus unedo plants by injection into the petiole. These extremely small ABA doses resulted in transient reductions in stomatal conductance. The effectiveness with which injected ABA closed stomata was highest during the morning and decreased substantially at midday. Increased sensitivity to injected ABA may again occur in the late afternoon but recent measurements suggest that this may depend on long-term drought experience of the plants. The characteristics of the response to injected ABA were similar in irrigated and non-irrigated plants although irrigated plants responded in general more strongly.  相似文献   
10.
In the foothills of the Philip Smith Mountains, Brooks Range, Alaska, tussock tundra is the most widely distributed vegetation, and it occurs on rolling hills and in valleys that were shaped by a sequence of Pleistocene glaciations. In this study, aboveground standing biomass and production were compared in "intertrack tundra" areas that were relatively homogenous with respect to downslope drainage and adjacent "water tracks" that acted to channel water flow to the valley bottom stream. Comparisons of biomass, leaf area index, and specific leaf weight were also made between upper and lower slope positions. Similarities and differences of vegetation structure are examined with respect to graminoid, deciduous shrub, evergreen shrub, herbaceous, and bryophyte components.
Water tracks were found to have 1.5–1.7 times the biomass of intertrack tundra, and production (excluding secondary growth) in water tracks was 40% greater than in intertrack tundra. The aboveground biomass for all areas studied and the annual production values were similar to those found in other studies of tussock tundra. While only slight differences in depth of thaw occurred in water tracks and intertrack tundra during June and early July, water tracks thawed more deeply with the onset of summer rains. Warmer temperatures at 40 cm depth in July and August may have increased nutrient availability, whereas greater rooting depth and movement of water may have increased nutrient capture in water tracks as compared with the intertrack areas. Greater biomass and a deeper thaw depth occurred at upper slope locations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号